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A Data Description

A.1 Predictive Variables

We provide more detail on the definition of the macro-finance variables used to capture

the dynamics of the equity and option VRPs. The PE ratio is downloaded from Robert

Shiller’s webpage and is defined as the price of the SP500 divided by the 10-year trailing

moving average of aggregate earnings. The quarterly inflation rate is computed from the

Producer Price Index (PPI), aggregate employment is measured by the total number of

employees in the nonfarm sector (seasonally-adjusted), and the default spread is defined

as the yield differential between Moody’s BAA- and AAA-rated bonds. These three series

are downloaded from the Federal Reserve Bank of St. Louis.

Tables I and II report the unconditional moments and correlation matrix of the pre-

dictors over the long sample between 1970 and 2014 (179 quarterly observations) and

over the short sample between 1992 and 2014 (92 quarterly observations). Overall, the

summary statistics for the macro-finance studies are similar to those reported in previous

studies. The two broker-dealer variables contain information at different frequencies– the

leverage ratio is a slow-moving predictor, whereas the PBI return captures the short-term

reaction of intermediaries to aggregate losses.

[TABLE I HERE]

[TABLE II HERE]

A.2 The Set of Equity Portfolios

A.2.1 Portfolio Formation

We use the approach developed by Ang, Hodrick, Xing, and Zhang (2006) to form the

cross-section of 25 variance risk-sensitive portfolios. First, we estimate the market and

variance betas of individual stocks each month using daily returns over the previous

month. Using a daily frequency allows us to pin down the conditional risk loadings
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without specifying the conditioning information (see Lewellen and Nagel (2006) for a

detailed discussion). For each stock with at least 17 daily observations, we regress its

return on the CRSP market return rm,d and the innovation of the SP500 realized variance

uv,d. Computing a model-free variance innovation based on intraday return observations

is not feasible because this data is only available in the latter part of the sample. To

address this issue, we model the daily conditional variance of the SP500 return using a

standard GARCH (1,1): σ2
d = γ + ασ2

d−1 + βε2
d, where ε

2
d is the daily squared SP500

return. After estimating the parameters γ, α, and β using daily returns over a one-year

rolling window, we compute uv,d as ε2
d − σ̂2

d−1, where σ̂
2
d−1 is the conditional variance

estimated on the previous day.1

Second, we sort stocks according to their exposures to the market and variance factors.

Since short-window regressions can produce large estimation errors, we rank each stock i

based on its beta t-statistics, t̂im,t = b̂im,t/σ̂bim,t and t̂iv,t = b̂iv,t/σ̂biv,t , where σ̂bim,t , σ̂biv,t

denote the estimated volatilities of the estimated betas b̂im,t and b̂iv,t.2 Stocks are ranked

first into quintiles based on their market t-statistic, and then into quintiles based on their

variance t-statistic.

Third, we compute the average return of all stocks in each group. To mitigate liquidity

concerns, we apply a value-weighting scheme and exclude NASDAQ stocks. Repeating

these three steps each month over the entire sample period, we obtain the return time-

series of the 25 variance portfolios.

A.2.2 Summary Statistics over the Short Sample

Table III summarizes the properties of the variance portfolios (Low, 2, 3, 4, High) over the

short sample (1992-2014). Consistent with the results in Table 1 of the paper, Panel A

1Whereas Ang, Hodrick, Xing, and Zhang (2006) use the daily change in the VIX index to measure
uv,d, we follow a different approach for two reasons. First, as noted by these authors, the VIX is a noisy
proxy of the variance innovation because it also captures changes in the risk premium itself. Second,
data on the VIX is only available in the early 1990s whereas our sample begins in 1970.

2Several papers (e.g., Kosowski, Timmerman, Wermers, and White (2006)) show that the t-statistic
allows for an improved ranking because it controls for the precision of the estimated coeffi cient. Con-
sistent with these studies, we find that ranking based on t-statistics largely improves the post-ranking
characteristics of the variance portfolios (see Section F.1).
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reveals that both average returns and post-formation variance betas vary monotonically

across portfolios. The spreads in average returns and variance betas between the high-

and low-variance portfolios are both higher than the ones observed during the full sample

(-5.09% vs -3.11% per year for returns, 1.49 vs 0.73 for betas). Panel B shows that

the rejections of the commonly-used asset pricing models are stronger during the short

sample. Across the four tested models, the estimated annual alphas of the high minus

low variance portfolio range between -5.97% (CAPM) and -4.67% (Fama-French and

liquidity) and are all highly significant.

[TABLE III HERE]

B Estimation Procedure

B.1 The Equity Market

B.1.1 Two-Pass Regression in a Conditional Setting

This section provides additional information on the procedure for estimating the Variance

Risk Premium (VRP) projection in the equity market using the conditional two-pass

regression approach developed by Gagliardini, Ossola, and Scaillet (2015). In the first

step, we estimate, for each equity portfolio p (p = 1, ..., n), the coeffi cients of the following

time-series regression:

rep,t+1 = −c′pzt + bpv · rvt+1 + bpm · fm,t+1 + ep,t+1, (B1)

where rep,t+1 is the excess return of portfolio p, zt is the J-vector of lagged predictors (in-

cluding a constant), rvt+1 is the realized market variance, and fm,t+1 is the market factor.

The (J+2)-vector of coeffi cients βp = (−c′p, bpv, bpm)′ is equal toE[xt+1x
′
t+1]−1E[xt+1r

e
p,t+1],
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where xt+1 = (z′t, rvt+1, fm,t+1)′. The OLS estimator of βp is given by

β̂p =

(
T∑
t=1

xt+1x
′
t+1

)−1 T∑
t=1

xt+1r
e
p,t+1, (B2)

where T is the total number of return observations.

In the second step, we compute the estimator of the 2J-vector V e = (V e′
v , V

e′
m )′ that

drives the risk-neutral expectations of the two risk factors (variance and market). Specif-

ically, we use a WLS approach to estimate the following cross-sectional regression:

cp = BpV
e, (B3)

where Bp a J × 2J matrix equal to [bpv · IJ , bpm · IJ ], and IJ is the J × J identity

matrix. For each portfolio p, we compute a J × J matrix of weights wp = diag(vp)
−1,

where vp is the covariance matrix of the J-vector of standardized errors
√
T (ĉp − B̂pV

e).

This matrix is equal to vp = C ′V eQ
−1
x SppQ

−1
x CV e , where Qx = E[xt+1x

′
t+1], Spp is a

(J + 2)× (J + 2) matrix equal to E[e2
p,t+1xt+1x

′
t+1], CV e is a (J + 2)× J matrix defined

as [E ′1−(IJ⊗V e′)JAE
′
2]′ with E1 = [IJ ,0J×2]′, E2 = [02×J , I2]′, JA = WJ,J ·2(I2⊗vec(IJ)),

0J×2 is a J × 2 matrix of zeros, and WJ,J ·2 is a (J, J · 2)-commutation matrix.3 The

empirical counterpart of vp is given by

v̂p = C ′
V̂ e1
Q̂−1
x Ŝ−1

p Q̂−1
x CV̂ e1 , (B4)

where Q̂x = 1
T

∑T
t=1 xt+1x

′
t+1, Ŝpp = 1

T

∑T
t=1 ê

2
p,t+1xt+1x

′
t+1, êp,t+1 = rep,t+1− β̂

′
pxt+1, CV̂ e1

=

[E ′1 − (IJ ⊗ V̂ e′
1 )JAE

′
2]′, and V̂ e

1 is the first-step OLS estimator of V
e obtained using unit

weights, i.e., V̂ e
1 =

(∑n
p=1 B̂

′
pB̂p

)−1∑n
p=1 B̂

′
pĉp. Using the estimated matrix of weights

3The commutation matrix Wn,m of order n ·m×n ·m is defined such that Wn,mvec(A) = vec(A′) for
any matrix A ∈ Rm×n.
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ŵp, we obtain the following estimator of V e :

V̂ e =

(
n∑
p=1

B̂′pŵpB̂p

)−1 n∑
p=1

B̂′pŵpĉp. (B5)

Third, we turn to the estimation of the vector of the linear forecasts of the risk factors

defined as proj(ft+1| zt) = F ′zt, where ft+1 = (rvt+1, fm,t+1)′, and F = [Fv, Fm] is a J × 2

matrix of coeffi cients equal to E[ztz
′
t]
−1E[ztf

′
t+1]. These coeffi cients are obtained from an

OLS regression of the factors on the lagged predictors, i.e.,

F̂ =

(
T∑
t=1

ztz
′
t

)−1 T∑
t=1

ztf
′
t+1. (B6)

Combining equations (B5) and (B6), we compute the projections of the variance and

market risk premia as

λ̂
e

v,t(z) =
(
F̂v − V̂ e

v

)′
zt,

λ̂
e

m,t(z) =
(
F̂m − V̂ e

m

)′
zt, . (B7)

B.1.2 Distribution of the Estimated Coeffi cients

In an unconditional setting, Jagannathan and Wang (1998) show that the estimated

vector of unconditional risk premia is consistent and asymptotically normally distributed.

Its covariance matrix Σλ is equal to Σf + 1
n
ΣV , where Σf is the covariance matrix of the

risk factors, and ΣV e is the covariance matrix of the estimated risk factor expectations

under the risk-neutral measure. Gagliardini, Ossola, and Scaillet (2015) demonstrate

that a similar result holds in a conditional setting. Specifically, the 2J-vector that drives

the vector of conditional risk premia, Λ̂e = vec(F̂ )− V̂ e, is consistent and asymptotically

normally distributed, i.e.,

√
T
(

Λ̂e − Λe
)
⇒ N(02J×1,ΣΛe). (B8)
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The 2J × 2J covariance matrix ΣΛe is the sum of two terms, ΣF and 1
n
ΣV e , defined as

ΣF = (IJ ⊗Q−1
z )Σu(IJ ⊗Q−1

z ), (B9)

ΣV e =

(
1

n
B′WB

)−1
1

n
B′WVWB

(
1

n
B′WB

)−1

, (B10)

where Σu is a 2J × 2J matrix equal to E(ut+1u
′
t+1 ⊗ ztz′t) with ut+1 = ft+1 − F ′zt, B is

a Jn × 2J matrix defined as [B′1, ..., B
′
n]′, W is a Jn × Jn block diagonal matrix with

elements [wp]p=1,...,n on its diagonal, and V is a Jn× Jn matrix composed of J × J sub-

matrices [Vpk]p,k=1,...,n with Vpk = C ′V eQ
−1
x SpkQ

−1
x CV e , and Spk = E[ep,t+1ek,t+1xt+1x

′
t+1].

A consistent estimator of ΣΛe can be obtained by replacing Σu, Q
−1
z , B, W, and V with

their empirical counterparts.

B.1.3 Joint Test of Correct Specification

To determine whether the two-factor model is correctly specified, we use the test statistic

proposed by Kan, Robotti, and Shanken (2013). Under the null hypothesis of correct

specification, the sum of the squared pricing errors, Q =
∑n

p=1 (cp −BpV
e)′ (cp −BpV

e) ,

is equal to zero and its estimated counterpart multiplied by T is asymptotically distrib-

uted as

TQ̂ =
T

n

n∑
p=1

ζ̂
′
pŵpζ̂p

d−→ 1

n

nJ−2J∑
p=1

eigp · χ2
p, (B11)

where ζ̂p is the J-vector of estimated errors computed as ĉp−B̂pV̂
e, eigp (p = 1, ..., nJ−2J)

are the non-zero eigenvalues of the matrix D = V 1/2(W −WB(B′WB)−1B′W )V 1/2, and

χ2
p (p = 1, ..., nJ − 2J) are i.i.d. chi-square variables with one degree of freedom.

B.2 The Option Market

B.2.1 Treatment of Samples with Unequal Lengths

This section explains how to estimate the VRP projection in the option market. To

compute the J-vector of risk-neutral coeffi cients V o
v , we run a time-series regression of the
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squared VIX index vix2
t on the predictors. The main issue is that the periods over which

the variables are observed have unequal lengths: the realized variance and predictors are

available since 1970 (long sample), whereas the VIX index is only observed since the early

1990’s (short sample). To exploit the information contained in the long sample, we use

an extension of the Generalized Method of Moments (GMM) developed by Lynch and

Wachter (2013). To begin, we denote by g(V o
v,S) and g(Fv,S) the J-vectors of moments

associated with V o
v and Fv over the short sample, and by g(Fv) the J-vector of moments

associated with Fv over the long sample:

g(V o
v,S) =

1

λT

λT∑
ft(V

o
v,S) =

1

λT

λT∑
ztuvix,t+1 =

1

λT

λT∑
zt(vix

2
t − V o′

v zt),

g(Fv,S) =
1

λT

λT∑
ft(Fv,S) =

1

λT

λT∑
ztuv,t+1 =

1

λT

λT∑
zt(rvt+1 − F ′vzt),

g(Fv) =
1

T

T∑
ft(Fv) =

1

T

T∑
ztuv,t+1 =

1

T

T∑
zt(rvt+1 − F ′vzt), (B12)

where λT is the number of observations over the short sample. The procedure proposed

by Lynch and Wachter (2013) consists of using a new set of moments to estimate V o
v :

g(V o
v ) = g(V o

v,S)−BV ov ,Fv(g(Fv)− g(Fv,S)), (B13)

where each row of the J×J matrix BV ov ,Fv contains the coeffi cients of a regression of each

element in g(V o
v,S) on the J-vector g(Fv,S). To compute these coeffi cients, we estimate the

vectors V o
v and Fv over the short sample. Then, we use equations (B12) to compute the

J-vectors ft(V̂ o
v,S) and ft(F̂v,S) at each time t, and run a time-series regression of each

element in ft(V̂ o
v,S) on ft(F̂v,S).

By construction, the estimated vector of long sample moments g(F̂v) equals zero

because we use it to compute F̂v, while the estimated short sample moment g(F̂v,S) is

given by 1
λT
Z ′(Yrv−ZF̂v), where Z = [z′(1−λ)T+1, ..., z

′
T ]′, and Yrv = [rv(1−λ)T+2, ..., rvT+1]′.
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Plugging these estimates into equation (B13), we have:

g(V o
v ) =

1

λT
Z ′(Yvix − ZV o

v )− B̂V ov ,Fv

(
1

λT
Z ′(Yrv − ZF̂v)

)
=

1

λT

(
Z ′(Yvix − ZV o

v )− B̂V ov ,FvZ
′(Yrv − ZF̂v)

)
, (B14)

where Yvix = [vix2
(1−λ)T+1, ..., vix

2
T ]′. Therefore, the adjusted estimated vector given by

V̂ o
v = (Z ′Z)

−1
(
Z ′Yvix − B̂V ov ,FvZ

′(Yrv − ZF̂v)
)

= V̂ o
v,S − Â, (B15)

where Â is the adjustment factor given by (Z ′Z)−1 B̂V ov ,FvZ
′(Yrv − ZF̂v).

B.2.2 Distribution of the Estimated Coeffi cients

Exploiting the results derived by Lynch and Wachter (2013), we can determine the prop-

erties of the 2J-vector of estimated coeffi cients Ĉo = [F̂ ′v, V̂
o′
v ]′. Specifically, it is consistent

and asymptotically normally distributed, i.e.,

√
λT
(
Ĉo − Co

)
⇒ N(02J×1,ΣCo). (B16)

The 2J × 2J covariance matrix ΣCo is equal to

ΣCo = (I2 ⊗ E[ztz
′
t]
−1)SA(I2 ⊗ E[ztz

′
t]
−1), (B17)

where SA is defined as

SA =

 λSFv λSFv ,V ov

λSV ov ,Fv SV ov − (1− λ)SV ov ,FvS
−1
Fv
SFv ,V ov

 , (B18)

with SFv =
∑∞

τ=−∞E[ft(Fv)ft−τ (Fv)
′], SFv ,V ov =

∑∞
τ=−∞E[ft(Fv)ft−τ (V

o
v )′], and SV ov =∑∞

τ=−∞E[ft(V
o
v )ft−τ (V

o
v )′]. To estimate these elements, we build on the procedure de-

scribed by Stambaugh (1997) and Lynch and Wachter (2013). First, we use the White
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estimator to compute ŜFv over the full sample. Then, we use the estimated coeffi cient

matrix B̂V ov ,Fv and the estimated residual covariance matrix Σ̂ from the regression of

ft(V̂
o
v,S) on ft(F̂v,S) to compute the remaining terms:

ŜFv ,V ov = Ŝ ′FvB̂
′
V ov ,Fv

, (B19)

ŜV ov = Σ̂ + B̂V ov ,Fv ŜFvB̂
′
V ov ,Fv

. (B20)

This approach guarantees that the estimator of ŜA is positive-definite. Plugging this

estimator in equation (B18) and replacing E[ztz
′
t] with its estimated value over the long

sample, Q̂z = 1
T

∑T
t=1 ztz

′
t, we obtain a consistent estimator of ΣCo .

Based on these results, we can determine the properties of the coeffi cients that affect

the dynamics of the option VRP. Specifically, the J-vector of estimated coeffi cients Λ̂o
v =

F̂v − V̂ o
v is asymptotically distributed as

√
λT (Λ̂o

v − Λo
v)⇒ N(0J×1,ΣΛov). (B21)

The J × J covariance matrix ΣΛov is given by

ΣΛov = Σ1
Co + Σ2

Co − 2Σ1,2
Co , (B22)

where Σ1
Co is the J ×J upper block of ΣCo , Σ2

Co is the J ×J lower block of ΣCo , and Σ1,2
Co

is the off-diagonal block of ΣCo.

B.3 t-Statistics for the Difference in Estimated Coeffi cients

The difference between the equity and option VRPs is defined as d′vzt, where dv is a

J-vector equal to V o
v −V e

v . To determine whether each element of the estimated vector d̂v

is significantly different from zero, we implement a bootstrap procedure. Consistent with

the specification chosen to estimate both VRPs, we model the dynamics of the excess
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return of each equity portfolio p (p = 1, ..., n), the predictors, the market return, the

realized variance, and the squared VIX index as

rep,t+1 = −(bpv · V e′
v + bpm · V e′

m )zt + bpv · rvt+1 + bpm · fm,t+1 + ep,t+1,

zt+1 = Φzt + uz,t+1,

rvt+1 = F ′vzt + uv,t+1,

fm,t+1 = F ′mzt + um,t+1,

vix2
t = V o′

v zt + uvix,t. (B23)

After estimating the different coeffi cients in the system of equations (B23), we build a

λT × N matrix of estimated residuals, R̂ = [ê, ûz, ûv, ûm, ûvix], where λT is the num-

ber of observations over the short sample, and N is equal to n + (J − 1) + 3. We

have ê = [ê′(1−λ)T+2, ..., ê
′
T+1]′ with êt = [ê1,t, ..., ên,t], ûz = [û′z,(1−λ)T+2, ..., û

′
z,T+1]′, ûv =

[ûv,(1−λ)T+2, ..., ûv,T+1]′, ûm = [ûm,(1−λ)T+2, ..., ûm,T+1]′, and ûvix = [ûvix,(1−λ)T+1, ..., ûvix,T ]′.

For each bootstrap iteration b (b = 1, ..., 1, 000), we first draw with replacement a set

of T rows from the matrix R̂. This procedure allows us to preserve the cross-sectional

correlation between the residuals. Second, we plug the estimated coeffi cients and the

bootstrapped residuals into equations (B23) to build, for each time t (t = 1, ..., T ), the J-

vector of predictors zt(b), the excess return of the variance portfolios rep,t+1(b), the realized

variance fv,t+1(b), and the market return fm,t+1(b). Third, we construct the squared VIX

vix2
t (b) using the bootstrapped residuals over the short sample. Fourth, we take all of

these bootstrapped time-series and re-estimate the J-vectors of coeffi cients V̂ e
v (b) and

V̂ o
v (b) using the approaches proposed by Gagliardini, Ossola, and Scaillet (2015) and

Lynch and Wachter (2013), and compute d̂v(b) as V̂ o
v (b) − V̂ e

v (b). After repeating these

four steps 1,000 times, we compute the t-statistic of each element, d̂v,j (j = 1, ..., J), as

d̂v,j
σ̂dv,j

, where σ̂dv,j is the standard deviation of the 1,000 bootstrapped values.
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C Construction of the Variance Mimicking Portfolio

This section explains how we form a mimicking portfolio that tracks the market variance

payoff based on the return information contained in the 25 equity portfolios. Specifically,

we can use equation (B1) to write the (market-hedged) excess return of each portfolio as

rep,t+1 = −bpv·perv,t+bpv·rvt+1+εp,t+1, where perv,t is the forward price of the realized variance

formed in the equity market, and εp,t+1 is the idiosyncratic component. Whereas we do

not observe perv,t, we can replace it by its projection implied by the two-factor model

proj(perv,t
∣∣ zt) = V e′

v zt, and form a strategy that invests: (i) one dollar in portfolio p

financed at the risk-free rate; (ii)
bpv ·proj(perv,t|zt)

(1+rft)
dollars at the risk-free rate. The resulting

payoff is equal to

xep,t+1 = rep,t+1 + bpv · proj(perv,t
∣∣ zt) = bpv · rvt+1 + ep,t+1, (C1)

where ep,t+1 is equal to εp,t+1 + bpv(proj(p
e
rv,t

∣∣ zt)−perv,t). After stacking the portfolio pay-
offs and variance betas to form the vectors xet+1 = [xe1,t+1, ..., x

e
n,t+1]′ and bv = [b1v, ..., bnv]

′,

we can construct the variance-mimicking equity portfolio by solving the following mini-

mization problem:

min
b

var(rvt+1 − b′xet+1) s.t. b′bv = 1. (C2)

The optimal coeffi cient b∗ is given by

b∗ = E(xet+1x
e′
t+1)−1

[
E(xet+1rvt+1)− qbv

]
, (C3)

where the constant q is equal to
b′v[E(xet+1x

e′
t+1)−1E(xet+1rvt+1)]−1

b′vE(xet+1x
e′
t+1)−1bv

. The final payoff of this

portfolio is equal to the sum of the realized variance and a residual term, i.e.,

xes,t+1 = b∗′xet+1 = rvt+1 + b∗′et+1, (C4)
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and its excess return is given by

res,t+1 = b∗′ret+1 = rvt+1 + b∗′et+1 − proj(perv,t
∣∣ zt), (C5)

where et+1 = [e1,t+1, ..., en,t+1]′ and ret+1 = [re1,t+1, ..., r
e
n,t+1]′. To compute the optimal vec-

tor b∗ from the data, we first use equation (C1) and measure the payoff vector xet+1 as

ret+1 + b̂v · V̂ e′
v zt, where the estimated vector b̂v is obtained from the time-series regression

of the two-factor model with all predictors, and V̂ e
v is the estimated equity vector esti-

mated using the conditional two-pass regression. Second, we replace E(xet+1x
e′
t+1) with

1
T

∑T
t=1 x

e
t+1x

e′
t+1, E(xet+1rvt+1) with 1

T

∑T
t=1 x

e
t+1rvt+1, and bv with b̂v in equation (C3) to

compute b∗. Third, we compute the payoff and excess return the mimicking portfolio as

b̂∗′xet+1 and b̂
∗′ret+1, respectively.

Our construction of the mimicking equity portfolio is closely related to the one exam-

ined by Ferson, Siegel, and Xu (2006) and Lamont (2001), in which they maximize the

correlation between the risk factor and the mimicking portfolio return conditional on a

set of predictors zt. Applying their approach to the variance factor, we obtain a mim-

icking portfolio whose excess return is given by b′ret+1, where b is the coeffi cient vector

from the following time-series regression: rvt+1 = c′zt + b′ret+1 + et+1. The optimiza-

tion problem in equation (C2) is similar except that we impose two restrictions: (i) the

variance beta of the mimicking portfolio is equal to one (to make it comparable to the

variance-mimicking option portfolio); (ii) the intercept c′zt is consistent with the model

restriction, i.e., c′zt = proj(perv,t
∣∣ zt) = V e′

v zt.

D Specification Tests

D.1 The Market Risk Premium

As discussed in Section B, the estimation procedure yields an estimate of the Market Risk

Premium (MRP) projection. Studying its properties provides an additional specification
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test of the two-factor model. This test uses the restriction that the market factor fm,t+1 is

an excess return which has, by construction, a zero forward price (pefm,t = 0). Therefore,

if the two-factor model is correctly specified, the linear projection of the MRP must be

equal to the linear projection of the market factor, i.e.,

λem,t(z) = proj(fm,t+1| zt) = F ′mzt. (D1)

A testable implication of this restriction is that each element of the risk-neutral vector V e
m

equals zero. The empirical evidence in Table IV reveals that the equality V e
m = 0 is not

rejected by the data because none of the estimated coeffi cients is statistically significant.

We also examine the relationships between the predictors and the MRP projection by

reporting the estimated vector F̂m − V̂ e
m in Table V. Panel A reveals that the PE ratio

is the most important explanatory variable with a negative and significant coeffi cient of

-1.96. The resulting premium is strongly countercyclical, as depicted in Figure I which

plots its time variation over the long sample (1970-2014). Overall, the properties of the

market risk premium are consistent with those documented in the previous literature

(e.g., Fama and French (1989) and Keim and Stambaugh (1986)).

[TABLE IV HERE]

[TABLE V HERE]

[FIGURE I HERE]

D.2 Comparison of the Portfolio Return Projections

To further assess the specification of the two-factor model, we study the properties of the

projection of the equity portfolio returns on the space spanned by the predictors, defined

as

proj(rep,t+1

∣∣ zt) = h′pzt, (D2)
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where the coeffi cient vector hp is obtained from a time-series regression of the portfolio

excess return on the predictors. This projection is unconstrained in the sense that it can

be estimated without specifying the identity and/or the number of risk factors. As such,

it can be compared with the constrained version implied by the two-factor model:

projM(rep,t+1

∣∣ zt) = bpvλ
e
v,t(z) + bpmλ

e
m,t(z) = bpv (Fv − V e

v )′ zt + bpm (Fm − V e
m)′ zt. (D3)

If the two-factor model omits relevant risk factors, we expect the two projections to follow

different patterns. To examine this issue, we run a time-series regression of the estimated

value of proj(rep,t+1

∣∣ zt) on that of projM(rep,t+1

∣∣ zt) for the five quintile portfolios de-
scribed in Table 1 of the paper. Table VI reveals that the constrained version tracks its

unconstrained counterpart almost perfectly, with adjusted R2s ranging between 0.95 and

0.98. This analysis provides further evidence that the two-factor model performs well at

capturing the dynamics of the equity portfolio returns.

[TABLE VI HERE]

D.3 Hedging Errors of the Variance-Mimicking Portfolio

If the two-factor model is correctly specified, two predictions can be made on the hedging

error of the variance-mimicking equity portfolio. First, its volatility must be small because

the idiosyncratic term is largely diversified away. We find that the volatility of the hedging

error represents only 19% of the average residual volatility of the 25 equity portfolios.

To visualize this result, we plot the payoff of the mimicking equity portfolio, alongside

with that of its option-based counterpart. Whereas the former logically exhibits greater

volatility because of the residual term, Figure II shows that it is able to closely track

realized variance with a correlation coeffi cient of 0.80.

Second, the hedging error should be uncorrelated with the macro-finance and broker-

dealer variables because the difference between the forward price perv,t and its model-based
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projection V e′
v zt is unpredictable. Consistent with this prediction, the regression analysis

reveals that none of the coeffi cients is statistically significant.

[FIGURE II HERE]

D.4 Additional Risk Factors

We examine whether our main results change when we include additional risk factors that

could potentially drive the cross-section of equity portfolio returns. To begin, we consider

three extensions of the two-factor model that include commonly-used risk factors:

rep,t+1 = −c′pzt + b′pft+1 + sp · rsmb,t+1 + hp · rhml,t+1 + ep,t+1,

rep,t+1 = −c′pzt + b′pft+1 + sp · rsmb,t+1 + hp · rhml,t+1 +mp · rmom,t+1 + ep,t+1,

rep,t+1 = −c′pzt + b′pft+1 + sp · rsmb,t+1 + hp · rhml,t+1 + lp · rliq,t+1 + ep,t+1, (D4)

where bp = [bpv, bpm]′, ft+1 = [rvt+1, fm,t+1]′, rsmb,t+1, rhml,t+1, rmom,t+1, rliq,t+1 are the

returns on zero-investment factor-mimicking portfolios for size, book-to-market, momen-

tum, and liquidity obtained from Kenneth French’s and Lubos Pastor’s websites, and sp,

hp, mp, lp are the associated risk loadings.

Next, we allow the equity portfolios to load differently on the different components

of the market realized variance. We build on previous work by Adrian and Rosenberg

(2008) and consider a three-factor model that distinguishes between the low- and high-

frequency components of the realized variance denoted by rv1,t+1 and rv2,t+1, respectively.

Both components are extracted from the daily squared returns of the SP500 using the

Hodrick—Prescott filter and their sum is equal to rvt+1. The resulting three-factor model

can be written as

rep,t+1 = −c′pzt + bpv · rvt+1 + bpv2 · rv2,t+1 + bpm · fm,t+1 + ep,t+1. (D5)

Finally, we allow for a non-linear relationship between the equity portfolio returns
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and the realized variance. If we model the variance beta as a linear function of rvt+1, we

obtain the following three-factor model:

rep,t+1 = −c′pzt + bpv · rvt+1 + bpv2 · rv2
t+1 + bpm · fm,t+1 + ep,t+1. (D6)

For each model, we use the conditional two-pass regression to compute the VRP equity

projection, and compare the coeffi cients for the broker-dealer variables in the equity and

option markets. The results in Table VII confirm that the two variables continue to play

a significantly different role in the equity and option markets. In addition, the alternative

equity VRP projections are all similar to the baseline projection with pairwise correlations

ranging between 0.75 and 0.97.

[TABLE VII HERE]

D.5 Time-Varying Portfolio Betas

We model the time variation of the variance and market betas as linear functions of each

predictor zj,t : bpv,t = bpv + bpv,jzj,t−1 and bpm,t = bpm + bpm,jzj,t−1 (for j = 1, ..., J). In this

case, the factor model can be written as

rep,t+1 = −c′ptzt + bpv,t · rvt+1 + bpm,t · fm,t+1 + ep,t+1,

= −c′ptzt + bpv · rvt+1 + bpm · fm,t+1 + bpv,j · f1,t+1 + bpm,j · f2,t+1 + ep,t+1,(D7)

where f1,t+1 = zj,trvt+1, f2,t+1 = zj,tfm,t+1, and the equilibrium value for cpt is given by

bpv,t · V e′
v + bpm,t · V e′

m .

To measure the degree of time variation of the portfolio betas, we estimate the coef-

ficients bpv,j and bpm,j for each portfolio and each predictor (realized variance, PE ratio,

default spread, inflation, employment, leverage, and PBI return). In Table VIII, we

report the coeffi cient t-statistics for the variance factor and find little evidence of time

variation in betas. Only 10% of the coeffi cients are significant at the 5% level, and these
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occurrences are evenly distributed across predictors. For the market factor, Table IX

shows that the proportion of significant coeffi cients is slightly higher at 18% and most of

them are attributed to the PE ratio. Despite this higher concentration, its impact on the

coeffi cients associated with the broker-dealer variables, v̂ev(lev) and v̂ev(pbi), is expected

to be small. The reason is that the magnitude of the bias of these coeffi cients for each

portfolio depends on the three covariances between the omitted factor f2,t+1 and levt,

pbit, fm,t+1, which are all statistically indistinguishable from zero.

[TABLE VIII HERE]

[TABLE IX HERE]

E Potential Impact of Jump Risk

E.1 The Peso Problem

As discussed by Ang, Hodrick, Xing, and Zhang (2006), the estimation of the VRP can be

affected by the Peso problem, i.e., the occurrence of large but infrequent variance jumps.

To illustrate, suppose that we want to estimate the average option VRP defined as the

difference between the average realized variance r̂v and the average squared VIX v̂ix
2
.

If the number of variance spikes during the sample is smaller than the option market

expected ex-ante (measured by the risk-neutral expectation), r̂v is lower than v̂ix
2
and

the magnitude of the estimated VRP is inflated.

In our setting, r̂v is replaced with the more general expression F̂ ′vzt but the analysis

remains unchanged. Therefore, the equity and option VRPs should be interpreted with

some caution. However, the VRP difference D̂t(z) mitigates this problem because the

term F̂ ′vzt cancels out (see equation (4) in the paper). Therefore, as long as the risk-

neutral equity expectation V̂ e′
v zt is not systematically biased– a point discussed below– ,

D̂t(z) provides meaningful information about the price difference in both markets.

17



E.2 Jump Risk and the Omitted-Factor Bias

The equity vector V̂ e
v can potentially be biased if jump risk is required for explaining

the cross-section of equity portfolio returns. Although our previous analysis strongly

suggests that the two-factor is correctly specified, we carefully examine the theoretical

properties of the bias from omitting the jump risk factor.4 Without loss of generality,

we focus on leverage and assume that its (true) risk-neutral coeffi cients are the same in

the equity and option markets (i.e., vev(lev) = vov(lev)). Then, we then determine under

which conditions v̂ev(lev) is positively biased and leads to the negative difference between

v̂ov(lev) and v̂ev(lev) documented in Table 3 of the paper (Panel B).

To summarize our theoretical analysis presented in Section G, we demonstrate that

the jump risk premium must be sensitive to leverage (similar to the VRP). In addition,

the jump and variance betas must have opposite signs which implies that equity portfolios

must combine two properties diffi cult to reconcile: their returns must be positive when

variance is high, but negative when a jump occurs. Assuming that these conditions

hold, we further examine whether the bias can quantitatively reproduce the results in

Table 3 using a Monte-Carlo simulation analysis that matches the salient features of

the data. We find that the sensitivity of the jump risk premium to leverage must be

economically large and the portfolio betas on the jump and variance risks must be highly

negatively correlated. To summarize, the bias of v̂ev(lev) can only explain the observed

VRP difference under strong theoretical and empirical conditions that are unlikely to be

met.

E.3 Extreme Variance Observations

Besides the Peso problem, it is well known that a single large data observation can have a

disproportionate impact on estimated coeffi cients in linear regression models. To evaluate

this impact, we repeat the analysis after winsorizing 2.5% and 5% of the most extreme

4Whereas we mainly focus on the jump risk factor, the theoretical analysis of the bias presented in
Section G is general and applies to any omitted factor.
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market variance observations (1% and 2.5% in each tail). Table X reveals that the

estimated coeffi cients associated with the two broker-dealer variables remain statistically

significant in the option market. Therefore, the ability of these variables to explain the

VRP difference is not driven by a few extreme observations.

[TABLEX HERE]

E.4 The SVIX Index

When the market is subject to large price movements, the squared VIX computed from

option prices is not necessarily equal to the forward price of the realized variance. To

address this issue, we examine the properties of the SVIX index that is robust to market

jumps (see Martin (2013)). In Table XI, we examine the relationships between this index

and the different predictors between January 1996 and January 2012 (period during which

the SVIX index is available). Similar to the VIX index, the results confirm the important

role played by the two broker-dealer variables in the option market as their estimated

coeffi cients remain both negative and significant.

[TABLE XI HERE]

F Further Evidence

F.1 Alternative Approaches for Forming Equity Portfolios

We consider alternative procedures that could reasonably be used to form the set of

variance risk-sensitive portfolios. To begin, we construct these portfolios after modifying

the population of stocks in two ways. First, we remove tiny stocks as an alternative to

excluding NASDAQ stocks (All but tiny stocks). Similar to Fama and French (2008), we

define a stock as tiny if its monthy market capitalization falls below the 20th percentile

of the market capitalization for NYSE stocks. Second, we include all existing stocks (All
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stocks) to address the concern that relevant information on the market VRP is lost when

specific stocks are excluded (All stocks).

Next, we consider three approaches for measuring the stock exposures to market and

variance risk. First, it is well-known that OLS coeffi cients are sensitive to outliers (e.g.,

Martin and Simin (2003)). To address this issue, we compute robust beta t-statictics

(Robust betas) using the Huber loss function (Huber (1981)). Second, we expand the

time-horizon over which betas are estimated from monthly to quarterly (Quarterly betas).

Third, we rank stocks according to their estimated betas to evaluate the importance of

controling for estimation errors using t-statistics (No t-statistics).

Finally, nonsynchronous price movements can have a significant impact on stock betas

measured at the daily frequency (see Lo and MacKinlay (1990)). In the spirit of Dim-

son (1979), we therefore add the lagged daily market return rm,d−1 and lagged variance

innovation uv,d−1 in the time-series regresssions performed each month (Lagged factors):

ri,d = γ + b1
im,trm,d + b2

im,trm,d−1 + b1
irv,tuv,d + b2

irv,tuv,d−1 + εi,d, where ri,d is the return

of stock i on day d. The estimated market and variance betas are then computed as

b̂im,t = b̂1
im,t + b̂2

im,t and b̂irv,t = b̂1
irv,t + b̂2

irv,t, respectively. Alternatively, we also exclude

the daily return observations equal to zero for each month and each stock (Zero returns).

This approach is motivated by Bekaert, Harvey, and Lundblad (2007) who use the number

of zero daily returns as their main illiquidity measure.

Table XIII reports the coeffi cients for the broker-dealer variables in the equity and

option markets. In all of these cases, we still find that the leverage ratio is a key de-

terminant of the difference between the two VRPs. For the PBI return, the difference

between the estimated coeffi cients remains highly significant in all but two cases. When

stocks are ranked based on the estimated betas (no t-statistics), the negative relationship

between variance betas and average returns weakens and the correlation with the baseline

equity VRP drops to 0.44. These results highlight the importance of using t-statistics to

reduce estimation errors in short-window regressions. Similar results are obtained with

quarterly betas, which is consistent with Ang, Hodrick, Xing, and Zhang (2006) who note
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that using longer windows reduces the information content of the beta estimates.

[TABLE XII HERE]

F.2 Broker-Dealer Variables in the Equity Market

In Table 3 of the paper, we show that the broker-dealer variables (leverage and PBI return)

play no role in driving the time variation of the equity VRP projection. To visualize this

result, we plot in Figure III the projections with and without the broker-dealer variables

and confirm that they are nearly indistinguishable.

[FIGURE III HERE]

F.3 Alternative Predictive Variables

In this section, we measure whether the impact of the broker-dealer variables (leverage

and PBI return) on the equity and option VRPs changes with the identity of the macro-

finance variables. First, we replace the PE ratio with the dividend yield computed from

the CRSP index. Second, we replace the quarterly growth rate in employment with two

alternative indicators of real activity: the seasonally-adjusted quarterly growth rate in

industrial production and the business cycle indicator constructed by Aruoba, Diebold,

and Scotti (2009) which aggregates information regarding employment, industrial pro-

duction, and interest rates. Third, we take the initial set of macro-finance variables and

add two commonly-used interest rate variables: the 3-month T-bill rate and the term

spread, defined as the difference between the 10- and 1-year T-bond yields. Fourth, we

add the quarterly variance of the inflation rate following recent work by Paye (2012) who

finds that this variable helps to predict the future quarterly volatility. For each specifica-

tion, Table XIII reports the coeffi cients for the broker-dealer variables in the equity and

option markets. In all of these cases, the two broker-dealer variables continue to play a

significantly different role in the equity and option markets.
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We also consider alternative specifications in which we add to the baseline set of pre-

dictors the squared values of the macro-finance variables. The motivation for these tests

is to determine whether the explanatory power of the broker-dealer variables stems from

their ability to capture any non-linear relationships between the macro-finance variables

and the VRPs. The results documented in Table XIV show that it is not the case.

[TABLE XIII HERE]

[TABLE XIV HERE]

F.4 Implied Individual Stock Variance and Correlation

The market variance is equal to the sum of the individual stock variances and their

covariances. Therefore, the VIX index contains information about the prices of both

individual stock variance risk (changes in individual stock variances) and correlation risk

(changes in the correlation structure of stocks). In this section, we examine how the

broker-dealer variables affect each of these two prices. We extract the price of individual

stock variance from individual option prices as the equally-weighted average of the implied

variances of the SP500 stocks. For correlation risk, its price is measured by the implied

correlation among SP500 stocks computed from index and individual option prices. Both

series are computed monthly and are available between January 1996 and August 2013.5

The relationships between the broker-dealer variables and the implied stock variance

is reported in Panel B of XV (first row). Contrary to the squared VIX, the coeffi cient

associated with leverage is positive and is not statistically significant when considered

jointly with the PBI return (with a t-statistic of 1.47). This finding is consistent with the

empirical role played by intermediaries in the option market. Whereas the VIX is inferred

from index options, the implied stock variance is computed from individual stock options

whose supply is not dominated by financial intermediaries (see Garleanu, Pedersen, and

Poteshman (2009)). Changes in their risk-bearing capacity are therefore less likely to

5Driessen, Maenhout, and Vilkov (2009) provide a detailed description of the construction of these
variables.
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drive the prices of these options.

Repeating this analysis for the implied correlation, we observe in Panel B (second

row) that it shares strong similarities with the squared VIX as the leverage coeffi cient is

both negative and highly significant. Therefore, periods when intermediaries deleverage

are associated with an increase in the prices of both aggregate variance and correlation

risks. This similarity resonates with the study by Driessen, Maenhout, and Vilkov (2009)

which finds that the market VRP is mostly attributed to correlation risk.

[TABLE XV HERE]

F.5 Analysis based on Monthly Data

In this section, we re-estimate the equity and option VRPs over a monthly time-horizon

using the same estimation procedure as the one described in Section B. All of the variables

(risk factors, portfolio returns, predictors) are available at the monthly frequency, except

for the leverage ratio of broker-dealers. To address this issue, we linearly interpolate the

quarterly leverage values (similar to Kan, Robotti, and Shanken (2013), and Vissing-

Jorgensen and Attanasio (2003)). We also replace the quarterly VIX with its monthly

counterpart computed from the prices of one-month SP500 options.

Table XVI examines the explanatory power of the predictors on the monthly VRPs

and reveals that the two broker-dealer variables remain the only significant drivers of

the VRP difference (the t-statistics are equal -4.26 for leverage and -5.08 for the PBI

return). We observe that the explanatory power of the PBI return becomes stronger at

the monthly horizon, consistent with the fact that changes in this variable are short-

lived. For the equity market, using monthly data seems to introduce some noise in the

relationship between the macro-finance variables and the VRP as the t-statistics decrease

and the model is marginally rejected (when the 10% threshold is used). However, the

coeffi cients share strong commonalities with their quarterly-based counterparts. In most

cases, their signs remain the same and their ratios are close to one third.
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[TABLE XVI HERE]

F.6 Analysis based on Individual Stocks

F.6.1 Estimation Procedure

The analysis of the equity VRP presented in the paper is based on a set of variance risk-

sensitive equity portfolios. An alternative procedure advocated, among others, by Ang,

Liu, and Schwarz (2010), and Gagliardini, Ossola, and Scaillet (2015) is to directly use

individual stock data as inputs for estimation. Whereas the extended two-pass regression

is similar to the one presented in Section B, Gagliardini, Ossola, and Scaillet (2015)

explain that two important differences must be properly accounted for. First, the panel

of individual stock returns is unbalanced and contains stocks with short-return histories.

These stocks may yield regression coeffi cients that are either highly volatile or impossible

to compute (if the matrix inversion cannot be performed). To address this issue, it is

necessary to introduce an appropriate trimming mechanism to reduce the cross-section

of stocks. Second, the number of individual stocks is extremely large (more than 7,000 in

our sample). The econometric theory must account for this feature by letting both the

number of return observations and the number of stocks grow large (double asymptotics).

It implies that the asymptotic distributions of the estimated coeffi cients and the test

statistic differ from those obtained with portfolios.

The estimation procedure can be summarized as follows. In the first step, we compute,

for each individual stock i (i = 1, ...,m), the OLS estimator of the (J + 2)-vector of

coeffi cients βi = (−c′i, biv, bim)′ as

β̂i =

(
T∑
t=1

Ii,txtx
′
t

)−1 T∑
t=1

Ii,txtr
e
i,t, (F1)

where rei,t is the stock excess return, xt+1 is a (J + 2)-vector defined as (z′t, rvt+1, fm,t+1)′,

T is the total number of observations, and Ii,t is a indicator function equal to 1 if rei,t is

24



observed. Following Gagliardini, Ossola, and Scaillet (2015), we introduce a trimming

device that keeps stock i in the cross-section only if CN(Q̂x,i) ≤ χ1,T and τ i,T ≤ χ2,T ,

where CN(Q̂x,i) =
(
eigmax(Q̂x,i)/eigmin

(
Q̂x,i

)) 1
2
denotes the condition number of Q̂x,i =

1
T

∑T
t=1 Ii,txtx

′
t, τ i,T = T

Ti
, and Ti =

∑T
t=1 Ii,t is the total number of return observations

for stock i. As advocated by Gagliardini, Ossola, and Scaillet (2015), we set χ1,T = 15

and χ2,T = 2.275 (which implies a minimum of 80 quarterly return observations).6

In the second step, we compute the estimator of the 2J-vector V e = (V e′
v , V

e′
m )′ that

drives the risk-neutral expectations of the two risk factors (variance and market) using

the non-trimmed stocks only. Similar to the portfolio approach, we use a WLS approach

in which the J × J matrix of estimated weights for each stock i is computed as ŵi =

diag(1χi v̂i)
−1, where v̂i is given by equation (B4), and 1χi is J × J matrix whose diagonal

elements are equal to one if stock i is kept in the cross-section and zero otherwise. Using

the estimated matrix of weights ŵi, we obtain the following estimator of V e :

V̂ e
stock =

(
m∑
i=1

B̂′iŵiB̂i

)−1 m∑
i=1

B̂′iŵiĉi, (F2)

where B̂i a J ×2J matrix equal to [b̂iv · IJ , b̂im · IJ ]. The J-vector of estimated coeffi cients

V̂ e
v,stock can be then plugged in equation (B7) to obtain the VRP projection in the equity

market, λ̂
e

v,t(z) =
(
F̂v − V̂ e

v,stock

)′
zt.

When T andm grows large and the two-factor model is correctly specified, Gagliardini,

Ossola, and Scaillet (2015) demonstrate that the 2J-vector Λ̂e
stock = vec(F̂ ) − V̂ e

stock is

consistent and normally distributed, i.e.,

√
T
(

Λ̂e
stock − Λe

)
⇒ N(02J×1,ΣF ). (F3)

where ΣF = (IJ ⊗ Q−1
z )Σu(IJ ⊗ Q−1

z ). As discussed above, the asymptotic distribution

6Specifically, Gagliardini, Ossola, and Scaillet (2015) conduct a Monte-Carlo analysls based on T =
546 monthly observations, and note that χ2,T must be equal to 2.275

(
546
200

)
in order to estimate the risk

premium coeffi cients and the model test statistic (see p. 38). In our sample, T is equal to 179, which
implies that each stock must have at least 80 return observations

(
i.e., 17980 = 2.23

)
.
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of Λ̂e
stock differs from its portfolio-based counterpart because its covariance matrix only

depends on the variance of the coeffi cients in the factor predictive regressions (i.e., the

term 1
n
ΣV e that appears in equation (B8) vanishes here).

The statistic for testing whether the two-factor model is correctly specified is also

different from its portfolio-based counterpart in equation (B11). The test developed by

Gagliardini, Ossola, and Scaillet (2015) is based on the statistic ξ̂m,T defined as T
√
m(Q̂−

1
T
J), where Q̂ = 1

m

∑m
i=1 ζ̂

′
iŵiζ̂ i, and ζ̂ i = ĉi − B̂iV̂

e
stock. As T and n grow large, it can be

shown that

ξ̂m,T ⇒ N(0,Σξ). (F4)

The variance term is defined as

Σξ = 2 lim
m→∞

E

[
1

n

∑
i,j

τ 2
i,T τ

2
j,T

τ 2
i,j,T

trace
[(
C ′V eQ

−1
x,iSijQ

−1
x,jCV e

)
wi
(
C ′V eQ

−1
x,jSjiQ

−1
x,iCV e

)
wj
]]
,

where τ i,j,T = 1
T

∑T
t=1 Ii,tIj,t. To implement this test, we simply need to replace CV e , Qx,i,

Qx,j, Sij, wi, and wj with their empirical counterparts to obtain a consistent estimator

of Σξ. Finally, we use the same bootstrap procedure as the one outlined in Section B.3

to examine the VRP difference between the equity and option markets. To make the

bootstrap approach tractable, we assume that the return residuals from the two-factor

model are uncorrelated across stocks.

F.6.2 Empirical Results

The results in Table XVII reveal that our main results hold again with individual stocks.

The leverage ratio and PBI return remain the most important drivers of the VRP dif-

ference with t-statistics equal to -3.66 and -6.36, respectively. Similar to the results

documented by Gagliardini, Ossola, and Scaillet (2015) for commonly-used asset pricing

models (e.g., CAPM, Fama-French), our specification test largely rejects the null hypoth-

esis that the two-factor model is able to price individual stocks. This finding resonates
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with the previous literature that highlights the challenges of explaining the cross-section

of individual stock returns as (i) individual stocks are likely to be exposed to a wide range

of risk factors (e.g., Lewellen, Nagel, and Shanken (2010), Daniel and Titman (2012));

(ii) their betas are likely to change over time (e.g., Andersen, Bollerslev, Diebold, and

Wu (2006)).7 The rejection of the two-factor model contrasts with its ability to explain

the cross-section of portfolio returns used in our baseline specification. Therefore, the

portfolio-based approach described in Section B allows for a more accurate estimation of

the equity VRP.

[TABLE XVII HERE]

G Analysis of the Omitted-Factor Bias

G.1 Theoretical Analysis

In this section, we study the potential impact of omitting a relevant factor on the esti-

mated risk-neutral equity vector V̂ e
v .Whereas we focus on the coeffi cient associated with

leverage, v̂ev(lev), the same analysis applies to the PBI return. Without loss of generality,

we make several assumptions to make our presentation as simple as possible. First, we

assume that the portfolio returns are driven by the standardized leverage levt and two

demeaned factors, the realized variance rvt+1 and an additional factor f1,t+1. To allow

for a non-zero correlation ρ between the two factors, we write f1,t+1 as ρrvt+1 + bεε1,t+1,

where bε is equal to
√

(1− ρ2) and the factor ε1,t+1 is uncorrelated with rvt+1. Second,

7In theory, we could incorporate several sources of risk and explicitly specify the beta dynamics.
However, such models are diffi cult to estimate because of the large number of parameters. In addition,
Ghysels (1998) shows that a wrong specification of time-varying betas may result in large pricing errors
(possibly greater than those produced by a constant beta model).
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we define the covariance matrix of the vector [levt, rvt+1, ε1,t+1]′ as

Ω =


1 f ev (lev) f eε (lev)

f ev (lev) σ2 0

f eε (lev) 0 σ2

 , (G1)

where the volatilities of rvt+1, ε1,t+1 (and thus f1,t+1) are captured by the same parameter

σ. Based on the coeffi cients in equation (G1), we can write the projections of the two

factors on the space spanned by leverage as

proj(rvt+1| zt) = f ev (lev) · levt, proj(f1,t+1| zt) = (ρf ev (lev) + bεf
e
ε (lev)) · levt. (G2)

Similarly, we define the projections of the forward factor prices as

proj(perv,t
∣∣ zt) = vev(lev) · levt, proj(pef1,t

∣∣ zt) = (ρvev(lev) + bεv
e
ε(lev)) · levt. (G3)

Third, we assume that the vector of portfolio betas on rvt+1 and f1,t+1, denoted by

bp = [bpv, bpf ]
′ , is drawn from a bivariate normal distribution with a zero mean and a

covariance matrix Ωb in which the variance terms are both equal to σ2
b and the covariance

is given by ρbσ
2
b . The correlation coeffi cient ρb provides a convenient way to examine

different scenarios regarding the signs of the betas: if ρb is positive, bpv and bpf tend

to have the same signs, while the opposite holds if ρb is negative. The resulting factor

representation of the excess return of each portfolio is defined as

rep,t+1 = −cp · levt + bpv · rvt+1 + bpf · f1,t+1 + ep,t+1, (G4)

where the restriction imposed by the model on the intercept is given by

cp = bpv · vev(lev) + bpf · (ρvev(lev) + bεv
e
ε(lev)) . (G5)
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We study the properties of v̂ev(lev) when the model used for estimation includes levt

and rvt+1, but omits the relevant factor f1,t+1. Standard results on regression analysis

reveal that the estimated coeffi cient vector β̂p = (−ĉp, b̂pv)′ is biased, i.e.,

bias(β̂p) = Ω−1
lev,rv

 cov(levt, ρrvt+1)

cov(rvt+1, ρrvt+1)

 bpf + Ω−1
lev,rv

 cov(levt, bεε)

cov(rvt+1, bεε)

 bpf , (G6)

where Ωlev,rv denotes the covariance matrix of levt and rvt+1. From equation (G6), the

average values of the two estimated coeffi cient can be written as

c∗p = E(ĉp) = cp −
σ2bεf

e
ε (lev)

σ2 − f ev (lev)2
bpf ,

b∗pv = E(b̂pv) = bpv + ρbpf −
bεf

e
ε (lev)f ev (lev)

σ2 − f ev (lev)2
bpf . (G7)

Any bias in the coeffi cient vector β̂p across portfolios can potentially affect the average

value of v̂ev(lev) because the latter is obtained from the cross-sectional regression of the

vector c∗ = [c∗1, ..., c
∗
n]′ on the vector b∗v = [b∗1v, ..., b

∗
nv]
′, i.e.,

vev(lev)∗ = E(v̂ev(lev)) = (b∗′v b
∗
v)
−1
b∗′v c

∗. (G8)

Intuitively, vev(lev)∗ can be interpreted as a cross-sectional average of the portfolio pseudo-

values, where each pseudo-value, vev(lev)∗p, is defined such that the equilibrium condition

applied to the misspecified model holds (for p = 1, ..., n):

c∗p = b∗pv · vev(lev)∗p. (G9)

Therefore, we can determine the properties of the bias of v̂ev(lev) by studying the differ-

ence between the pseudo-value vev(lev)∗p and the true value v
e
v(lev). Taking the difference

between the LHSs and RHSs of equations (G5) and (G9) and rearranging terms, we can
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express the difference between vev(lev)∗p and v
e
v(lev) as

bpf
b∗pv

[
bε

(
veε(lev)− σ2 + f eε (lev)f ev (lev)

σ2 − f ev (lev)2
f eε (lev)

)]
= vev(lev)∗p − vev(lev). (G10)

This expression can be simplified if we set f ev (lev) equal to zero– an assumption consistent

with the fact that the estimated coeffi cient f̂ ev (lev) is not significant (see Table 2 of the

paper). In this case, b∗pv is equal to bpv + ρbpf and we have

bpf
bpf (ρb + ρ) + εb

[bε(v
e
ε(lev)− f eε (lev))] = vev(lev)∗p − vev(lev), (G11)

where bpv is decomposed into its two orthogonal components, bpfρb and εb.

Equation (G11) reveals three cases where the estimated leverage coeffi cient is unbi-

ased. First, bias(v̂ev(lev)) equals zero if the risk premium of the orthogonal factor ε1,t+1,

λε,t(z), is unrelated to leverage. This condition implies that veε(lev)− f eε (lev) is null and

that vev(lev)∗p equals v
e
v(lev) for each portfolio. Second, we obtain the same result if the

factor correlation ρ tends to ±1 because bε =
√

(1− ρ2) tends to zero. Third, v̂ev(lev)

is unbiased when the sum of the correlations, ρb + ρ, is equal to zero. In this case, the

first term on the LHS becomes bpf
εb
and the two elements of this ratio are uncorrelated.

Because bpf
εb
randomly takes negative and positive values, the cross-portfolio differences

between vev(lev)∗p and v
e
v(lev) offset one another and v̂ev(lev) is unbiased.

If none of these conditions is met, v̂ev(lev) is biased either positively or negatively

depending on the signs of: (i) the ratio bpf
b∗pv
(as measured by the sign of ρb + ρ); (ii) the

coeffi cient veε(lev)− f eε (lev) that relates leverage to λε,t(z). If both terms are positive or

negative for most portfolios, the LHS of equation (G11) is positive, which implies that

the bias is positive, i.e., v̂ev(lev) is, on average, higher than vev(lev). On the other hand,

if the two sums have opposite signs for most portfolios, the LHS of equation (G11) is

negative and the resulting bias is negative, i.e., v̂ev(lev) is, on average, lower than vev(lev).
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G.2 Simulation Analysis

To quantify the magnitude of this bias, we recourse to a Monte-Carlo simulation analy-

sis. The parameter values are chosen according to our empirical findings. The factor

volatility σ is equal to 0.012 (the standard deviation of the realized variance), and the

beta volatility σb is equal to 0.51 (the cross-sectional standard deviation of the variance

betas). Importantly, we set vev(lev) equal to -0.37 so that the equity VRP, defined here

as (f ev (lev)− vev(lev)) levt = −vev(lev)levt, exhibits the same relationship with leverage as

the one estimated in the option market (see Table 3 of the paper). Therefore, the (true)

impact of leverage on the equity and option VRPs is exactly the same. In both markets,

a decrease in leverage increases the compensation for hedging against variance risk (i.e.,

both VRPs decrease).

The simulation analysis is conducted over 1,000 trials, where each trial s (s = 1, ..., 1, 000)

includes three steps. First, we randomly draw, for each portfolio p (p = 1, ..., 25), the

beta vector bsp from the bivariate normal distribution. Second, we compute the values

taken by the two coeffi cients c∗,sp and b∗,sp,v for each portfolio using equations (G7). Third,

we create the two vectors c∗,s = [c∗,s1 , ..., c∗,s25 ]′ and b∗,sv = [b∗,s1v , ..., b
∗,s
25v]
′, and use equation

(G8) to compute vev(lev)∗,s. After repeating these three steps over 1,000 draws of portfolio

betas, we compute bias(v̂ev(lev)) as 1
1,000

∑1,000
s=1 vev(lev)∗,s − vev(lev).

In our first scenario, we interpret the omitted factor f1,t+1 as a jump risk factor that

has the same premium properties as those of the realized variance by setting f ef (lev) = 0

and vef (lev) = −0.37. The negative value for vef (lev) implies that the jump risk premium,(
f ef (lev)− vef (lev)

)
levt, is strongly negative when intermediaries’leverage is low (similar

to the VRP itself). In addition, a jump factor is positively correlated with realized

variance by construction (Todorov (2010)). To account for this positive relationship, we

set ρ is equal to 0.55 (the correlation between the realized variance and the high-frequency

variance component computed by Adrian and Rosenberg (2008)). In Panel A of Figure

IV, we plot the relative bias, defined as bias(v̂ev(lev))
abs(vev(lev))

, across different values for the beta
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correlation ρb ranging between -0.9 and 0.9. Because v
e
ε(lev)−f eε (lev) is negative, we have

a positive bias when ρb + ρ is negative (i.e., bpf
b∗pv
tends to be negative). At ρb = −0.53, the

sum ρb+ρ is null and the resulting bias is equal to zero. Finally, the bias becomes negative

when ρb > −0.53 because bpf
b∗pv
tends to be positive. All of these results are consistent with

the predictions of equation (G11).

This analysis is important for interpreting the main result of the paper that leverage

drives the option VRP, but not the equity VRP. To attribute this result to the omission

of a jump risk factor, vev(lev)∗ must be equal to zero. Given that vev(lev) equals -0.37,

the relative bias must therefore be positive and equal to 100%. However, Panel A reveals

that the highest bias is close to 90%. A bias of 100% is achievable if we are willing to

assume that the risk premium of f1,t+1 is extremely sensitive to leverage. For instance,

suppose that the term veε(lev) − f eε (lev) is doubled from -0.37 to -0.74 so that a one-

standard deviation decline in leverage increases the magnitude of the jump premium by

3.0% per year. In this case, Panel A shows that the bias reaches 100% provided that

portfolio betas have opposite signs 79% of the time (i.e., ρb must be equal to −0.80).8

This condition implies that the equity portfolios must combine two properties that are

diffi cult to reconcile: their returns must be high (low) when the realized variance is high

and, at the same time, low (high) when the market return exhibits a jump.

In the second scenario, we assume that f1,t+1 has the opposite premium properties to

the ones of the realized variance, i.e., f ef (lev) = 0 and vef (lev) = 0.37. The omitted factor

can be interpreted as a recession risk factor whose premium,
(
f ef (lev)− vef (lev)

)
levt,

increases when intermediaries’ leverage is below average (contrary to the VRP). The

main difference with the previous scenario is that veε(lev)− f eε (lev) turns positive, which

produces a positive relationship between ρb and bias(v̂
e
v(lev)). To plot this relationship,

we set vef (lev) equal to 0.37 and ρ equal to -0.41 (the average correlation between the

realized variance and the market return). The results in Panel B reveal that the bias

8This proportion is obtained by simulating a large number of draws for the beta vector bp = [bpv, bpf ]
′

from the bivariate normal distribution (with ρb = −0.85), and then counting the number of times bpv
and bpf have different signs.
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reaches 100% only if the portfolio betas have the same sign 85% of the time (i.e., ρb

must be equal to 0.89). Similar to the first scenario, this last condition implies that the

portfolios must combine two properties that are diffi cult to reconcile: they must perform

well (poorly) both when the realized variance is high and when the recession hits. If we

are willing to double vef (lev) from 0.37 to 0.74, the required beta correlation remains high

at 0.73.

[FIGURE IV HERE]
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Table I: Unconditional Moments of the Predictive Variables

Panel A reports the first four moments as well as the first-, and second-order partial autocorre-
lation coeffi cients of the predictors used to capture the dynamics of the Variance Risk Premium
(VRP) over the long sample from 1970 to 2014 (179 quarterly observations). The set of predic-
tors (all expressed in log form) includes the lagged realized variance (RV), the price/earnings
ratio (PE), the default spread (DEF), the quarterly inflation rate of the producer price index
(PPI), the quarterly growth rate of the seasonally-adjusted number of employees in the nonfarm
sector (EMP), the leverage ratio of broker-dealers (LEV), and the quarterly return of the prime
broker index (PBI). Panel B reports the same statistics over the short sample from 1992 to 2014
(92 quarterly observations).

Panel A: Long Sample (1970-2014)

Mean Std. Skew. Kurt. AC1 AC2

Lagged Realized Variance (RV) −5.34 0.79 0.96 4.57 0.66 0.14
Price/Earnings Ratio (PE) 2.86 0.45 -0.14 2.18 0.98 −0.14
Default Spread (DEF) 1.01% 0.41% 1.85 8.29 0.83 −0.11
Producer Price Index (PPI) 0.92% 1.28% 0.20 6.22 0.41 0.21
Employment Growth (EMP) 0.37% 0.56% −0.83 4.84 0.75 0.04

Broker-Dealer Leverage (LEV) 2.71 0.60 0.06 2.20 0.96 0.12
Prime Broker Index (PBI) 1.98% 17.6% −0.57 4.62 0.05 −0.14

Panel B: Short Sample (1992-2014)

Mean Std. Skew. Kurt. AC1 AC2

Lagged Realized Variance (RV) −5.26 0.89 0.76 3.41 0.72 0.13
Price/Earnings Ratio (PE) 3.22 0.24 0.49 3.22 0.94 −0.19
Default Spread (DEF) 0.89% 0.40% 3.21 17.00 0.81 −0.24
Producer Price Index (PPI) 0.55% 1.09% −1.24 10.09 0.14 0.00
Employment Growth (EMP) 0.27% 0.47% −1.71 6.79 0.82 0.17

Broker-Dealer Leverage (LEV) 3.20 0.31 1.08 6.38 0.84 0.03
Prime Broker Index (PBI) 2.07% 16.3% −1.31 6.19 0.05 −0.10
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Table II: Correlation Matrix of the Predictive Variables

Panel A reports the correlation matrix of the predictors over the long sample from 1970 to
2014 (179 quarterly observations). The set of predictors (all expressed in log form) includes
the lagged realized variance (RV), the price/earnings ratio (PE), the default spread (DEF),
the quarterly inflation rate of the producer price index (PPI), the quarterly growth rate of the
seasonally-adjusted number of employees in the nonfarm sector (EMP), the leverage ratio of
broker-dealers (LEV), and the quarterly return of the prime broker index (PBI). Panel B reports
the same statistics over the short sample from 1992 to 2014 (92 quarterly observations).

Panel A: Long Sample (1970-2012)

PE DEF PPI EMP LEV PBI

Lagged Realized Variance (RV) 0.06 0.41 −0.08 −0.44 0.11 −0.28
Price/Earnings Ratio (PE) −0.53 −0.30 −0.02 0.78 0.04
Default Spread (DEF) −0.09 −0.52 −0.22 −0.04
Producer Price Index (PPI) 0.14 −0.30 −0.02
Employment Growth (EMP) −0.22 −0.04
Broker-Dealer Leverage (LEV) −0.07

Panel B: Short Sample (1992-2014)

PE DEF PPI EMP LEV PBI

Lagged Realized Variance (RV) 0.05 0.62 −0.20 −0.53 0.40 −0.45
Price/Earnings Ratio (PE) −0.47 0.10 0.39 0.19 0.21
Default Spread (DEF) −0.35 −0.76 −0.32 −0.40
Producer Price Index (PPI) 0.23 0.04 0.15
Employment Growth (EMP) −0.27 0.21
Broker-Dealer Leverage (LEV) −0.30
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Table III: Summary Statistics for the Equity Portfolios: Short Sample

Panel A shows the annualized excess mean, standard deviation, size (in log form), Book-to-
Market (BM) ratio, and the pre-, post-rank variance betas of the quarterly returns of quintile
portfolios formed by equally weighting all portfolios in the same variance beta quintile (Low,
2, 3, 4, High). For each quintile portfolio, the pre-rank beta is defined as the mean of the
variance betas across stocks on the portfolio formation dates. The post-rank variance beta is
computed from the time-series regression of the portfolio return on the variance and market
factors (including all predictors). Panel B reports the annualized estimated alpha of each quintile
portfolio using the CAPM, the Fama-French (FF) model that includes the market, size, and
BM factors, and two extensions that include momentum and liquidity factors, respectively. The
figures in parentheses report the heteroskedasticity-robust t-statistics. ∗∗∗, ∗∗, and ∗ designate
statistical significance at the 1%, 5%, and 10% level, respectively.

Panel A: Unconditional Moments, Characteristics, and Variance Betas

Quintile Mean St. Dev. Size BM Pre-rank beta Post-rank beta
(% p.a.) (% p.a.)

Low 10.29 14.74 9.33 0.54 −0.65 (−2.25) −1.66∗∗∗ (−4.55)
2 9.45 15.52 9.44 0.55 −0.29 (−0.82) −1.01∗∗∗ (−2.91)
3 7.47 14.93 9.49 0.52 −0.02 (−0.06) −0.99∗∗∗ (−2.83)
4 5.54 14.86 9.44 0.54 0.25 (0.70) −0.59∗∗ (−2.15)

High 5.19 16.35 9.46 0.53 0.61 (2.15) −0.17 (−0.48)
High-Low −5.09 8.31 0.13 −0.01 1.22 (4.40) 1.49∗∗∗ (3.32)

Panel B: Alphas

Quintile CAPM Fama-French (FF) FF+Momentum FF+Liquidity
(% p.a.) (% p.a.) (% p.a.) (% p.a.)

Low 4.07∗∗ (2.76) 2.40∗ (1.73) 2.64∗ (1.94) 1.54 (1.28)
2 2.95∗ (1.72) 1.62 (1.17) 0.96 (0.58) 1.30 (0.87)
3 0.94 (0.73) −0.04 (−0.38) 0.04 (0.03) −0.06 (−0.61)
4 −0.99 (−0.84) −2.07∗∗ (−2.26) −2.37∗∗∗ (−2.63) −2.49∗∗∗ (−2.58)

High −1.90∗∗ (−1.31) −2.96∗∗ (−2.31) −2.92∗∗ (−2.01) −3.13∗∗ (−2.24)
High-Low −5.97∗∗∗ (−3.13) −5.36∗∗∗ (−2.72) −5.56∗∗∗ (−2.83) −4.67∗∗ (−2.42)
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Table IV: Market Factor: Risk Neutral Expectation

Panel A reports the estimated coeffi cients that drive the risk-neutral expectation of the market
factor for the set of macro-finance variables that includes the lagged realized variance (RV),
the price/earnings ratio (PE), the default spread (DEF), the quarterly inflation rate (PPI), and
the quarterly employment rate (EMP). The coeffi cients determine the impact of a one-standard
deviation change in the variables on the risk-neutral expectation of the market factor and are
obtained from the conditional two-pass regression. Panel B examines the incremental predictive
power of the broker-dealer leverage ratio (LEV) and the quarterly return of the prime broker
index (PBI) in the presence of the macro-finance variables. The figures in parentheses report
the heteroskedasticity-robust t-statistics.

Panel A: Macro-Finance Variables

Mean R. Var. PE ratio Default Inflation Employ.
(RV) (PE) (DEF) (PPI) (EMP)

Risk Neutral 0.01 −0.18 −0.12 −0.02 −0.01 −0.22
Expectation (0.08) (−1.19) (−0.48) (−0.08) (−0.10) (−1.32)

Panel B: Contribution of Broker-Dealer Variables

Combined
Leverage PB Index Leverage PB Index
(LEV) (PBI) (LEV) (PBI)

Risk Neutral −0.14 0.16 −0.11 0.14
Expectation (−1.02) (1.35) (−0.77) (1.14)
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Table V: Market Factor: Risk Premium

Panel A examines the relationships between the macro-finance variables and the Market
Risk Premium (MRP). The set of variables includes the lagged realized variance (RV), the
price/earnings ratio (PE), the default spread (DEF), the quarterly inflation rate (PPI), and
the quarterly employment rate (EMP). The coeffi cients determine the impact of a one-standard
deviation change in the variables on the MRP and are obtained from the conditional two-pass re-
gression. Panel B examines the incremental predictive power of the broker-dealer leverage ratio
(LEV) and the quarterly return of the prime broker index (PBI) in the presence of the macro-
finance variables. The figures in parentheses report the heteroskedasticity-robust t-statistics.
∗∗∗, ∗∗, and ∗ designate statistical significance at the 1%, 5%, and 10% levels.

Panel A: Macro-Finance Variables

Mean R. Var. PE ratio Default Inflation Employ.
(RV) (PE) (DEF) (PPI) (EMP)

Market Risk 1.70∗∗ 0.68 −1.96∗∗ −1.40 −1.17 −1.62∗∗

Premium (2.55) (0.88) (−1.96) (−1.02) (−1.29) (−1.98)

Panel B: Contribution of Broker-Dealer Variables

Combined
Leverage PB Index Leverage PB Index
(LEV) (PBI) (LEV) (PBI)

Market Risk −0.56 0.91 −0.34 0.83
Premium (−0.62) (1.26) (−0.34) (1.01)
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Table VI: Constrained versus Unconstrained Portfolio Return Projections

This table reports the slope and adjusted R2 of a time-series regression of the unconstrained
return projection on the model-implied projection for each quintile portfolio formed by equally
weighting all equity portfolios in the same variance beta quintile (Low, 2, 3, 4, High). The
unconstrained expectation is expressed as a linear function of the set of predictors that includes
the lagged realized variance, the price/earnings ratio, the default spread, the quarterly infla-
tion rate, the quarterly employment rate, the broker-dealer leverage ratio, and the quarterly
return of the prime broker index. The constrained version is computed from the estimated
coeffi cients of the two-factor model. The figures in parentheses report the heteroskedasticity-
robust t-statistics. ∗∗∗, ∗∗, and ∗ designate statistical significance at the 1%, 5%, and 10% level,
respectively.

Equity Portfolios
Quintile Low 2 3 4 High

Slope 1.03∗∗∗ 0.88∗∗∗ 1.02∗∗∗ 1.03∗∗∗ 1.17∗∗∗

(52.92) (94.91) (89.21) (69.41) (53.58)

R2 0.96 0.98 0.98 0.96 0.95
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Table VII: Alternative Factor Models for the Equity Market

This table examines the robustness of the explanatory power of the broker-dealer variables to
changes in the factor model used in the equity market. The first specification includes the
initial factors (realized variance (RV) and market return), and the Fama-French size and Book-
to-Market (BM) factors. The second and third specifications add the momentum and liquidity
factors to the previous specification. The fourth specification includes the initial factors and the
high-frequency RV component obtained from the Hodrick-Prescott filter. The fifth specification
includes the initial factors and the squared RV. For each specification, the first column reports
the correlation between the equity Variance Risk Premium (VRP) projection and its baseline
counterpart presented in the paper. The remaining columns contain the estimated coeffi cients
that drive the equity and option VRPs (as well as their difference) for the broker-dealer leverage
ratio (LEV) and the quarterly return of the prime broker index (PBI) in the presence of the
macro-finance variables. The coeffi cients determine the impact of a one-standard deviation
change in the predictors on the equity and option VRPs, as well as their difference. The figures
in parentheses report the heteroskedasticity-robust t-statistics. ∗∗∗, ∗∗, and ∗ designate statistical
significance at the 1%, 5%, and 10% levels, respectively.

Equity VRP Option VRP VRP Difference

Corr. Leverage PB Index Leverage PB Index Leverage PB Index
Baseline (LEV) (PBI) (LEV) (PBI) (LEV) (PBI)

Size+BM 0.75 −0.18 −0.09 0.37∗∗∗ 0.17∗∗ −0.55∗∗∗ −0.26∗∗

(−0.90) (−0.48) (4.68) (2.03) (−6.43) (−2.03)

Size+BM 0.79 −0.14 −0.06 0.37∗∗∗ 0.17∗∗ −0.51∗∗∗ −0.23∗

+Momentum (−0.67) (−0.30) (4.67) (2.03) (−5.84) (−1.79)

Size+BM 0.75 −0.17 −0.05 0.37∗∗∗ 0.17∗∗ −0.54∗∗∗ −0.22∗

+Liquidity (−0.84) (−0.23) (4.67) (2.03) (−6.24) (−1.70)

High-frequency 0.97 −0.26 −0.09 0.37∗∗∗ 0.17∗∗ −0.63∗∗∗ −0.26∗∗

RV (−1.17) (−0.47) (4.67) (2.03) (−7.27) (−2.11)

Squared RV 0.97 −0.19 −0.14 0.37∗∗∗ 0.17∗∗ −0.56∗∗∗ −0.31∗∗

(−0.83) (−0.71) (4.67) (2.03) (−6.54) (−2.53)
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Table VIII: Time-Varying Betas: Variance Factor

This table reports, for each equity portfolio sorted along the Market (M) and Variance (V)
dimensions, the t-statistic of the coeffi cients measuring the sensitivity of the variance beta
to changes in the lagged realized variance (RV), the price/earnings ratio (PE), the default
spread (DEF), the quarterly inflation rate (PPI), the quarterly employment rate (EMP), the
broker-dealer leverage ratio (LEV) and the quarterly return of the prime broker index (PBI). ∗

designates statistical significance at the 5% level or lower.

R. Var. PE Ratio Default Inflation Employ. Leverage PB Index
(RV) (PE) (DEF) (PPI) (EMP) (LEV) (PBI)

M1V1 −1.98∗ −0.50 1.36 −1.15 0.47 −0.88 0.38
M1V2 −0.83 1.33 0.25 −1.41 −0.16 0.44 −0.22
M1V3 −1.13 −1.03 1.05 1.09 0.53 0.46 −0.89
M1V4 −3.43∗ 1.10 −0.65 −1.70 0.84 0.01 −0.84
M1V5 −2.64∗ −0.50 −0.66 −2.44∗ 2.85∗ −1.17 1.88
M2V1 −3.95∗ 0.24 −1.95 −1.85 2.72∗ −1.26 0.78
M2V2 −0.21 1.64 0.46 −2.10 0.81 0.26 0.22
M2V3 −1.37 −0.19 1.02 −0.70 −0.89 0.15 1.21
M2V4 -1.74 1.02 0.96 −0.62 0.00 0.28 0.36
M2V5 0.43 −0.35 1.58 0.58 −0.35 2.06∗ 1.46
M3V1 −2.59∗ −0.58 0.67 −1.26 0.66 −1.87 1.61
M3V2 0.89 −0.96 0.39 −0.50 0.42 0.83 −0.18
M3V3 −2.05∗ −0.67 −2.00∗ −1.02 3.00∗ 0.37 0.20
M3V4 -0.64 −0.15 1.24 −0.29 0.10 −0.32 1.35
M3V5 −0.42 0.31 −0.73 0.47 0.93 1.54 −1.69
M4V1 −0.99 −0.17 1.44 −0.42 −1.46 1.60 0.18
M4V2 −2.73∗ −0.24 0.03 −0.91 0.00 −1.96∗ 0.00
M4V3 0.15 −1.80 4.17∗ 0.62 −2.35∗ 1.02 0.73
M4V4 0.02 −0.05 1.37 −0.31 0.67 1.91 1.34
M4V5 0.19 −1.66 1.43 −0.45 −0.60 4.07∗ −0.96
M5V1 −1.19 −1.47 −0.31 −0.62 0.11 −1.29 −0.29
M5V2 -0.68 −0.19 0.57 −1.92 0.56 0.05 0.74
M5V3 −0.54 1.50 −0.53 −0.86 1.19 0.31 −0.22
M5V4 0.52 −0.46 1.80 −0.26 −0.64 1.08 0.88
M5V5 1.77 −1.23 1.69 1.15 −0.61 0.82 0.00
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Table IX: Time-Varying Betas: Market Factor

This table reports, for each equity portfolio sorted along the Market (M) and Variance (V)
dimensions, the t-statistic of the coeffi cients measuring the sensitivity of the market beta to
changes in the lagged realized variance (RV), the price/earnings ratio (PE), the default spread
(DEF), the quarterly inflation rate (PPI), the quarterly employment rate (EMP), the broker-
dealer leverage ratio (LEV) and the quarterly return of the prime broker index (PBI). ∗ desig-
nates statistical significance at the 5% level or lower.

R. Var. PE Ratio Default Inflation Employ. Leverage PB Index
(RV) (PE) (DEF) (PPI) (EMP) (LEV) (PBI)

M1V1 −2.81∗ −2.61∗ 0.91 0.94 1.22 −0.98 2.79∗

M1V2 −2.45∗ −2.15∗ 1.26 2.40 −0.08 0.59 0.12
M1V3 −2.22∗ −1.94 1.69 4.65 0.26 −0.43 −0.03
M1V4 −2.34∗ −2.87∗ 1.48 1.55 −0.56 0.48 −0.15
M1V5 −1.88 −2.28∗ 0.96 −0.04 0.86 −0.16 1.08
M2V1 −2.18∗ −2.63∗ 1.49 −0.25 0.44 −0.10 1.78
M2V2 −1.89 −1.63 0.70 0.25 1.41 −0.30 1.43
M2V3 −1.92 −2.23∗ 1.50 0.71 0.08 −0.31 0.94
M2V4 −3.44∗ −4.48∗ 0.79 2.98∗ 0.86 0.15 0.39
M2V5 −1.49 −2.28∗ 1.19 2.14∗ −0.70 1.21 1.42
M3V1 −1.79 −4.50∗ 2.13∗ 1.28 −0.90 −0.74 1.93
M3V2 −0.31 −2.24∗ −0.06 2.13∗ 0.81 0.32 −0.36
M3V3 −1.41 −1.54 −0.11 0.63 0.64 0.82 0.09
M3V4 −1.41 −2.77∗ 2.29∗ 0.99 0.29 −1.01 1.59
M3V5 −1.26 −2.17∗ 0.78 0.91 0.80 −0.07 −0.82
M4V1 −1.18 −1.77 1.10 −0.34 −0.02 1.42 1.40
M4V2 −2.79∗ −4.07∗ 1.68 1.39 1.00 0.13 1.16
M4V3 −3.94∗ −2.54∗ 1.22 0.14 0.01 1.09 0.13
M4V4 −0.14 −1.35 1.21 −0.19 1.15 0.88 1.94
M4V5 −0.71 −1.93 1.69 0.17 −0.73 3.53∗ 1.05
M5V1 −0.39 −1.44 0.83 0.84 −1.53 −0.44 −0.03
M5V2 0.98 −2.10∗ 1.56 0.55 0.27 1.59 0.11
M5V3 0.49 −0.96 0.53 −1.64 0.51 2.59∗ −2.55∗

M5V4 −1.21 0.12 −0.03 −0.87 −0.24 1.31 0.35
M5V5 1.42 0.09 1.53 −0.92 −0.61 0.71 0.32
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Table X: Winsorized Variance Observations

This table examines the robustness of the explanatory power of the broker-dealer variables to
winsorizing extreme observations of the realized variance. For each threshold (1% and 2.5%
of observations winsorized at each end), the columns report the estimated coeffi cients that
drive the equity and option Variance Risk Premia (VRPs), as well as their difference for the
broker-dealer leverage ratio (LEV) and the quarterly return of the prime broker index (PBI)
in the presence of the macro-finance variables. The coeffi cients determine the impact of a one-
standard deviation change in the predictors on the equity and option VRPs, as well as their
difference. The figures in parentheses report the heteroskedasticity-robust t-statistics. ∗∗∗, ∗∗,
and ∗ designate statistical significance at the 1%, 5%, and 10% levels, respectively.

Equity VRP Option VRP VRP Difference

Leverage PB Index Leverage PB Index Leverage PB Index
(LEV) (PBI) (LEV) (PBI) (LEV) (PBI)

2% winsorized −0.15 −0.12 0.32∗∗∗ 0.15∗ −0.47∗∗∗ −0.27∗∗∗

(−0.61) (−0.63) (4.03) (1.75) (−6.12) (−2.53)

5% winsorized −0.07 −0.09 0.20∗∗∗ 0.11 −0.27∗∗∗ −0.20∗∗∗

(−0.71) (−0.99) (3.66) (1.37) (−4.50) (−2.91)
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Table XI: The Squared SVIX Index: Period 1996-2012

Panel A reports the estimated coeffi cients and the adjusted R2 of the regression of the quarterly
squared SVIX index on the set of macro-finance variables that includes the lagged realized
variance (RV), the price/earnings ratio (PE), the default spread (DEF), the quarterly inflation
rate (PPI), the quarterly employment rate (EMP). The coeffi cients determine the impact of a
one-standard deviation change in the variables on the squared SVIX and are computed using
the GMM for samples of unequal lengths. Panel B examines the incremental predictive power
of the broker-dealer leverage ratio (LEV) and the quarterly return of the prime broker index
(PBI) in the presence of the macro-finance variables. The figures in parentheses report the
heteroskedasticity-robust t-statistics. ∗∗∗, ∗∗, and ∗ designate statistical significance at the 1%,
5%, and 10% levels.

Panel A: Macro-Finance Variables

Mean R. Var. PE ratio Default Inflation Employ. R2

(RV) (PE) (DEF) (PPI) (EMP)

Squared 1.18∗∗∗ 0.69∗∗∗ −0.11 0.15∗∗ −0.05 0.11 0.76
SVIX (31.50) (10.31) (−1.37) (2.29) (−0.87) (1.58)

Panel B: Contribution of Broker-Dealer Variables

Combined
Leverage R2 PB Index R2 Leverage PB Index R2

(LEV) (PBI) (LEV) (PBI)

Squared −0.09∗∗ 0.76 −0.12∗∗ 0.77 −0.15∗∗∗ −0.17∗∗∗ 0.78
SVIX (−2.57) (−2.17) (−4.37) (−3.08)
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Table XII: Alternative Approaches for Forming Portfolios

This table examines the robustness of the explanatory power of the broker-dealer variables
to changes in the portfolio formation procedure. The first specification includes all but tiny
stocks, whereas the second includes all stocks in the population. The third, fourth, and fifth
specifications rank stocks each month based on their robust beta t-statistics, their quarterly
beta t—statistics, and their estimated betas. The sixth and seventh specifications account for
nonsynchronous trading by including the lagged factors in the stock return regressions, and by
excluding return observations equal to zero. For each specification, the first column reports
the correlation between the equity Variance Risk Premium (VRP) projection and its baseline
counterpart presented in the paper. The remaining columns contain the estimated coeffi cients
that drive the equity and option VRPs (as well as their difference) for the broker-dealer leverage
ratio (LEV) and the quarterly return of the prime broker index (PBI) in the presence of the
macro-finance variables. The coeffi cients determine the impact of a one-standard deviation
change in the predictors on the equity and option VRPs, as well as their difference. The figures
in parentheses report the heteroskedasticity-robust t-statistics. ∗∗∗, ∗∗, and ∗ designate statistical
significance at the 1%, 5%, and 10% levels, respectively.

Equity VRP Option VRP VRP Difference

Corr. Leverage PB Index Leverage PB Index Leverage PB Index
Baseline (LEV) (PBI) (LEV) (PBI) (LEV) (PBI)

All but Tiny 0.82 −0.08 −0.11 0.37∗∗∗ 0.17∗∗ −0.45∗∗∗ −0.28∗∗

Stocks (−0.34) (−0.34) (4.67) (2.03) (−3.32) (−2.10)

All 0.81 0.00 −0.23 0.37∗∗∗ 0.17∗∗ −0.37∗∗∗ −0.40∗∗∗

Stocks (0.02) (−1.18) (4.67) (2.03) (−3.55) (−2.96)

Robust 0.97 −0.08 0.03 0.37∗∗∗ 0.17∗∗ −0.45∗∗∗ −0.14
Betas (−0.33) (0.16) (4.67) (2.03) (−5.40) (−1.30)

Quarterly 0.44 −0.04 −0.28 0.37∗∗∗ 0.17∗∗ −0.42∗∗∗ −0.45∗∗∗

Betas (−0.17) (−1.19) (4.67) (2.03) (−4.63) (−3.69)

No 0.62 −0.23 0.08 0.37∗∗∗ 0.17∗∗ −0.60∗∗∗ −0.09
t-statistics (−1.14) (0.54) (4.67) (2.03) (−8.50) (−1.40)

Lagged 0.76 −0.21 −0.23 0.37∗∗∗ 0.17∗∗ −0.52∗∗∗ −0.41∗∗∗

Factors (−1.25) (−1.34) (4.67) (2.03) (−7.04) (−3.58)

Zero 0.86 −0.23 −0.15 0.37∗∗∗ 0.17∗∗ −0.61∗∗∗ −0.32∗∗∗

Returns (−0.86) (−0.77) (4.67) (2.03) (−7.28) (−2.83)
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Table XIII: Alternative Set of Macro-Finance Variables

This table examines the robustness of the explanatory power of the broker-dealer variables to
changes in the set of macro-finance variables. The first specification replaces the price/earnings
ratio with the dividend yield. The second and third specifications replace the quarterly growth
rate in employment with the quarterly growth rate in industrial production and the business
cycle indicator proposed by Aruoba, Diebold, and Scotti (2009), respectively. The fourth, fifth,
and sixth specifications add two bond variables (the three-month T-Bill rate and the term
spread), and the quarterly volatility of the inflation rate to the initial set of predictors. For
each specification, the columns report the estimated coeffi cients that drive the equity and option
Variance Risk Premia (VRPs) (as well as their difference) for the broker-dealer leverage ratio
(LEV) and the quarterly return of the prime broker index (PBI) in the presence of the macro-
finance variables. The coeffi cients determine the impact of a one-standard deviation change
in the predictors on the equity and option VRPs, as well as their difference. The figures in
parentheses report the heteroskedasticity-robust t-statistics ∗∗∗, ∗∗, and ∗ designate statistical
significance at the 1%, 5%, and 10% levels, respectively.

Equity VRP Option VRP VRP Difference

Leverage PB Index Leverage PB Index Leverage PB Index
(LEV) (PBI) (LEV) (PBI) (LEV) (PBI)

Dividend Yield −0.05 −0.05 0.41∗∗∗ 0.18∗∗ −0.41∗∗∗ −0.24∗∗

(−0.02) (0.27) (4.59) (2.16) (−3.42) (−1.95)

Industrial Production −0.17 −0.12 0.36∗∗∗ 0.17∗∗ −0.54∗∗∗ −0.30∗∗

(−0.70) (−0.64) (4.57) (2.04) (−3.93) (−2.28)

Business Cycle −0.07 −0.12 0.31∗∗∗ 0.19∗∗ −0.38∗∗∗ −0.30∗∗

(−0.31) (−0.60) (4.20) (2.31) (−3.93) (−2.32)

Short Rate −0.11 −0.12 0.38∗∗∗ 0.17∗∗ −0.48∗∗∗ −0.30∗∗

(0.48) (−0.65) (4.62) (2.07) (−3.68) (−2.27)

Term Spread −0.17 −0.13 0.38∗∗∗ 0.18∗∗ −0.55∗∗∗ −0.31∗∗

(−0.69) (−0.65) (4.76) (2.18) (−4.05) (−2.30)

Vol. Inflation −0.16 −0.10 0.35∗∗∗ 0.16∗∗ −0.52∗∗∗ −0.26∗∗

(−0.68) (−0.53) (4.56) (1.97) (−3.91) (−2.06)
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Table XIV: Squared Macro-Finance Variables

This table examines the robustness of the explanatory power of the broker-dealer variables
to changes in the set of macro-finance variables. The specifications include the initial set of
predictors (lagged realized variance, the price/earnings ratio, the default spread, the quarterly
inflation rate, the quarterly employment rate) and their squared values taken one at a time. For
each specification, the columns report the estimated coeffi cients that drive the equity and option
Variance Risk Premia (VRPs) (as well as their difference) for the broker-dealer leverage ratio
(LEV) and the quarterly return of the prime broker index (PBI) in the presence of the macro-
finance variables. The coeffi cients determine the impact of a one-standard deviation change
in the predictors on the equity and option VRPs, as well as their difference. The figures in
parentheses report the heteroskedasticity-robust t-statistics. ∗∗∗, ∗∗, and ∗ designate statistical
significance at the 1%, 5%, and 10% levels, respectively.

Equity VRP Option VRP VRP Difference

Leverage PB Index Leverage PB Index Leverage PB Index
(LEV) (PBI) (LEV) (PBI) (LEV) (PBI)

Realized Variance2 −0.09 −0.16 0.35∗∗∗ 0.18∗∗∗ −0.43∗∗∗ −0.34∗∗∗

(−0.36) (0.80) (4.33) (2.32) (−3.54) (−2.74)

PE Ratio2 −0.18 −0.07 0.26∗∗∗ 0.18∗∗ −0.45∗∗∗ −0.25∗∗

(−0.78) (0.34) (3.56) (2.19) (−3.46) (−2.01)

Default Spread2 −0.14 −0.08 0.37∗∗∗ 0.15∗ −0.51∗∗∗ −0.23∗

(−0.57) (−0.41) (4.80) (1.86) (−3.76) (−1.73)

Inflation2 −0.14 −0.09 0.35∗∗∗ 0.19∗∗ −0.49∗∗∗ −0.28∗∗

(−0.58) (−0.44) (4.45) (2.38) (−3.69) (−2.14)

Employment2 −0.18 −0.14 0.35∗∗∗ 0.22∗∗∗ −0.54∗∗∗ −0.37∗∗∗

(−0.74) (−0.75) (4.54) (2.65) (−4.06) (−2.80)
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Table XV: Implied Stock Variance and Implied Correlation

Panel A reports the estimated coeffi cients and adjusted R2 of regressions of the equally-weighted
average of the monthly implied variances of individual stocks (Implied Stock Variance) and the
monthly implied correlation (Implied Correlation) on the set of macro-finance predictors that
include the lagged realized variance (RV), the price/earnings ratio (PE), the default spread
(DEF), the quarterly inflation rate (PPI), and the quarterly employment rate (EMP). The
coeffi cients determine the impact of a one-standard deviation change in the variables on Implied
Stock and Implied Correlation, and are computed using the GMM for samples of unequal
lengths. Panel B examines the incremental predictive power of the orthogonalized broker-dealer
variables, the broker-dealer leverage ratio (LEV) and the quarterly return of the prime broker
index (PBI), in the presence of the macro-finance variables. The figures in parentheses report
the heteroskedasticity-robust t-statistics. ∗∗∗, ∗∗, and ∗ designate statistical significance at the
1%, 5%, and 10% levels, respectively.

Panel A: Macro-Finance Variables

Mean R. Var. PE ratio Default Inflation Employ. R2

(RV) (PE) (DEF) (PPI) (EMP)

Implied Stock 1.74∗∗∗ 0.67∗∗∗ 0.50∗∗∗ 0.51∗∗∗ −0.01 0.25∗∗∗ 0.69
Variance (36.49) (10.91) (5.41) (5.84) (−0.15) (−3.39)

Implied 40.63∗∗∗ 8.67∗∗∗ −10.62∗∗∗ −5.15∗∗∗ −1.39∗∗ 3.26∗∗∗ 0.50
Correlation (67.51) (12.20) (−8.65) (−4.96) (−2.05) (4.04)

Panel B: Contribution of Broker-Dealer Variables

Combined
Leverage R2 PB Index R2 Leverage PB Index R2

(LEV) (PBI) (LEV) (PBI)

Implied Stock 0.18∗∗∗ 0.73 −0.21∗∗∗ 0.71 0.10 −0.18∗∗∗ 0.73
Variance (2.68) (−3.94) (1.47) (−3.38)

Implied −1.16∗∗ 0.51 0.26 0.50 −1.45∗∗∗ −0.54 0.51
Correlation (−2.34) (0.43) (−2.91) (−0.86)
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Table XVI: Variance Risk Premia: Monthly Analysis

Panel A examines the relationships between the macro-finance variables and the equity Variance
Risk Premium (VRP), the option VRP, and their difference at the monthly frequency. The set
of variables includes the lagged realized variance (RV), the price/earnings ratio (PE), the default
spread (DEF), the quarterly inflation rate (PPI), and the quarterly employment rate (EMP).
The coeffi cients determine the impact of a one-standard deviation change in the variables on
the VRPs and their difference. The equity- and option-based coeffi cients are obtained from the
conditional two-pass regression approach and the GMM for samples of unequal lengths, respec-
tively. Panel B examines the incremental predictive power of the broker-dealer leverage ratio
(LEV) and the quarterly return of the prime broker index (PBI) in the presence of the macro-
finance variables. The figures in parentheses report the heteroskedasticity-robust t-statistics.
The J -statistic of the joint test and associated p-values in brackets determine whether the two-
factor equity model is correctly specified. ∗∗∗, ∗∗, and ∗ designate statistical significance at the
1%, 5%, and 10% levels.

Panel A: Macro-Finance Variables

Mean R. Var. PE ratio Default Inflation Employ. J -stat.
(RV) (PE) (DEF) (PPI) (EMP)

Equity VRP −0.09 −0.06 0.09 0.04 0.14∗ 0.07 5.76
(−1.15) (−0.56) (0.78) (0.34) (1.75) (0.77) [0.04]

Option VRP −0.13∗∗∗ −0.09∗∗∗ 0.08∗∗∗ 0.06∗∗∗ 0.05∗∗∗ −0.01
(−12.34) (−5.87) (4.36) (2.87) (3.08) (−0.79)

Difference 0.04 0.04 0.01 −0.02 0.08 0.08
(0.49) (0.59) (0.14) (−0.16) (1.45) (1.09)

Panel B: Contribution of Broker-Dealer Variables

Combined
Leverage J -stat. PB Index J -stat. Leverage PB Index J -stat.
(LEV) (PBI) (LEV) (PBI)

Equity VRP 0.02 6.90 −0.20∗∗∗ 6.76 −0.05 −0.20∗∗ 7.71
(0.24) [0.03] (−2.58) [0.04] (−0.47) (−2.49) [0.04]

Option VRP 0.07∗∗∗ 0.00 0.08∗∗∗ 0.03∗∗

(3.56) (0.32) (4.37) (2.07)

Difference −0.05∗ −0.20∗∗∗ −0.13∗∗∗ −0.23∗∗∗

(−1.67) (−4.53) (−4.26) (−5.08)
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Table XVII: Variance Risk Premia: Individual Stocks

Panel A examines the relationships between the macro-finance variables and the equity Vari-
ance Risk Premium (VRP) inferred from individual stocks, the option VRP, and their difference.
The set of variables includes the lagged realized variance (RV), the price/earnings ratio (PE),
the default spread (DEF), the quarterly inflation rate (PPI), and the quarterly employment
rate (EMP). The coeffi cients determine the impact of a one-standard deviation change in the
variables on the VRPs and their difference. The equity- and option-based coeffi cients are ob-
tained from the conditional two-pass regression applied to individual stocks and the GMM for
samples of unequal lengths, respectively. Panel B examines the incremental predictive power
of the broker-dealer leverage ratio (LEV) and the quarterly return of the prime broker index
(PBI) in the presence of the macro-finance variables. The figures in parentheses report the
heteroskedasticity-robust t-statistics. The J -statistic of the joint test and associated p-values
in brackets determine whether the two-factor equity model is correctly specified. ∗∗∗, ∗∗, and ∗

designate statistical significance at the 1%, 5%, and 10% levels.

Panel A: Macro-Finance Variables

Mean R. Var. PE ratio Default Inflation Employ. J -stat.
(RV) (PE) (DEF) (PPI) (EMP)

Equity VRP 0.05 0.01 0.07 0.01 0.08 0.22∗∗∗ 4.29
(0.68) (0.08) (0.67) (0.10) (0.82) (3.26) [0.00]

Option VRP −0.45∗∗∗ −0.34∗∗∗ 0.35∗∗∗ 0.01 0.19∗∗ −0.07
(−8.01) (−3.70) (3.42) (0.12) (2.22) (−0.72)

Difference 0.50∗∗ 0.34∗∗∗ −0.29∗∗∗ 0.00 −0.11∗ 0.28∗∗∗

(2.52) (3.41) (−3.56) (−0.01) (−1.72) (3.47)

Panel B: Contribution of Broker-Dealer Variables

Combined
Leverage J -stat. PB Index J -stat. Leverage PB Index J -stat.
(LEV) (PBI) (LEV) (PBI)

Equity VRP 0.21 4.55 −0.25∗∗∗ 4.28 0.14 −0.22∗∗ 4.79
(0.89) [0.00] (−4.41) [0.00] (−0.52) (−2.11) [0.00]

Option VRP 0.31∗∗∗ 0.07 0.37∗∗∗ 0.17∗∗

(3.84) (0.83) (4.68) (2.03)

Difference −0.09∗ −0.32∗∗∗ −0.23∗∗∗ −0.39∗∗∗

(−1.68) (−5.05) (−3.66) (−6.36)
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Figure I: Market Risk Premium

This figure reports the path of the quarterly Market Risk Premium (MRP) projection ob-
tained with the set of macro-finance predictors that includes the lagged realized variance, the
price/earnings ratio, the default spread, the quarterly inflation rate, and the quarterly employ-
ment rate. Shaded areas correspond to NBER recession periods. The y-axis is in percent per
quarter.
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Figure II: Payoffs of the Variance Mimicking Portfolios

This figure plots the quarterly payoffs of the mimicking portfolios formed in the equity and
option markets. The construction of the mimicking option portfolio (solid line) is based on the
approach developed by Carr and Wu (2009). The mimicking equity portfolio (dashed line) is
obtained from a linear combination of the equity portfolios inferred from the two-factor model.
The quarterly realized variance is almost identical to the payoff of the option portfolio and is
therefore not shown.
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Figure III: Equity Variance Risk Premium: Impact of the Broker-Dealer Variables

This figure compares the paths followed by two versions of the quarterly equity Variance Risk
Premium (VRP) projection. The first version is based on the set of macro-finance variables that
includes the lagged realized variance, the price/earnings ratio, the default spread, the quarterly
inflation rate, and the quarterly employment rate. The second version is obtained using the
macro-finance predictors as well as the two broker-dealer variables, which are the leverage ratio
of broker-dealers and the quarterly return of the prime broker index. The y-axis is in percent
per quarter.
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Figure IV: Simulated Omitted-Factor Bias

Panel A reports the bias of the estimated risk-neutral leverage coeffi cient for the equity Variance
Risk Premium (VRP), v̂ev(lev), when the asset pricing model omits a factor whose risk premium
is negatively related to leverage. The bias is defined in relative terms as a fraction of the true
leverage coeffi cient vev(lev), which is set equal to -0.37 (similar to the option-based estimate
in Table 3 of the paper). For each value taken by the correlation between the portfolio betas
(on the variance and omitted factors), we compute the bias via a simulation analysis that
replicates the salient feature of the data (1,000 trials are used for each scenario). We consider
two different values for the coeffi cient that relates leverage to the quarterly risk premium of the
omitted factor: -0.37% (solid line), and -0.74% (dashed line). Panel B repeats the analysis for
an omitted factor whose risk premium is positively related to leverage.
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