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I The Cross-Section of Micro Portfolios

A Portfolio Formation Procedure

We describe the procedure for forming the set of micro portfolios in each size group

(tiny-, small-, and big-cap). For each year  ( = 1  ) we first sort the  stocks

in a given size group according to their estimated average returns. To compute this

variable denoted by ̂ ( = 1  ) we follow the approach of Fama and French

(2006) in which the firm’s average return is expressed as a linear combination of its

book-to-market (), profitability ( ), and investment (). For each month  prior

to the formation date we run a cross-sectional regression of the monthly stock excess

returns on the most recent characteristics,  = ++++,

and then estimate the characteristic-based average return as

̂ =  +  +  +   (A1)

where     and  are the characteristics observed in year  and    

   are the time-series averages of the monthly coefficients. To faciliate the

chaining of portfolio returns over consecutive years, we work with the standardized

average return computed as

̂ =
̂ − 1



P
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´2¶1
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 (A2)

Second, we construct, for each stock  a micro portfolio by equally weighting the

stock itself and − 1 additional stocks with the nearest values to ̂ . The estimated
average return of the newly-created portfolio, denoted by ̂(), is computed as
1


¡
̂ +

P
 ̂

¢
 where  ( = 1  − 1) denotes the identity of the additional

stocks included in the portfolio. This technique is called local averaging and borrows

from Efron (2010, ch. 9).

Third, we chain the portfolio returns over time to obtain stable characteristic-based

average returns. For each pair ( ) of micro portfolios in years  and +1, we compute

the distance between them as
¯̄
̂()− ̂+1()

¯̄
 Then, we match the portfolios

with the lowest distance (each year- portfolio can only be paired with one year- + 1

portfolio). To minimize changes in portfolio composition, we match the pair ( ) first

if
¯̄
̂()− ̂+1()

¯̄
is in the bottom 1% of all measured distances.
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In Figure 1, we illustrate the portfolio formation procedure in a population of 50

stocks ( =  = 50) over a 2-year sample period ( = 2) Each dot denotes the

ordered value ̂ at the start of each year. We see that the portfolio composition

changes each year to account for the time-variation in characteristics. For instance, the

portfolio associated with the median average return ̂25 includes stocks S10, S42 

S3 in year 1, and stocks S18, S6  S46 in year 2. The formation procedure yields a total

number of micro portfolios,  equal to the number of stocks ( = )

In practice, the formation procedure is more complicated because the number of

stocks changes over time. Suppose that the number of stocks in year 2 is equal to 60

(instead of 50). Applying the matching procedure described above, we can pair 50 year-1

and 50 year-2 portfolios, which leaves 10 year-2 portfolios unmatched. In this example,

the cross-section includes 60 micro portfolios ( = 60) with unequal time-series lengths:

(i) 50 portfolios created in year 1 with complete return history (24 monthly returns),

(ii) 10 unmatched portfolios created in year 2 with 12 monthly return observations.

Conversely, suppose that we have 60 portfolios in year 1 (instead of 50). In this case, we

can only pair 50 year-1 portfolios, which leaves 10 year-1 portfolios unmatched ( = 60).

In general, the total number of micro portfolio is therefore equal to  = max()

Please insert Figure 1 here

B Definition of the Characteristics

We use the definitions of Fama and French (2008, 2015) to compute the firm’s book-to-

market, profitability, and investment measures at the end of June of each year . The

book-to-market is equal to the ratio of the book value of equity to the market value

of equity. The book value for year  is defined as total assets minus liabilities, plus

balance sheet deferred taxes and investment tax credit (if available), minus preferred

shares stock liquidating values (if available), or carrying value (if available). Each of

these variables is computed using data in the fiscal year ending in the calendar year

−1 The market value for year  equals the price times shares outstanding at the end
of December of year  − 1 Profitability for year  is defined as revenues minus cost of
goods sold, minus selling, general, and administrative expenses, minus interest expense

all divided by the book value of equity. Each of these variables is computed using data

in the fiscal year ending in the calendar year  − 1 Finally, investment for year  is
computed as the change in total assets between the fiscal years ending in calendar years

− 2 and − 1 For each of these characteristics, we winsorize the data at the 1% and

99% levels to remove outliers.
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II Estimation Procedure

A Extended Two-Pass Regression

We provide a general description of the econometric framework for estimating the pricing

errors of the micro portfolios. Under the misspecified model  the excess return of

each portfolio  ( = 1 ) can be written as

 =  +  + 0 + 0 +  (A3)

where  is the market excess return,  is the -vector of risk factors specific to

model   is a  -vector of mean-zero factors that capture the strong correlation

structure between micro portfolios, and  denotes the remaining residual term (weakly

correlated). The intercept is equal to

 =  − 0

 (A4)

where  is the portfolio pricing error and  is the -vector of forward prices of the

risk factors (i.e., their prices multiplied by the gross riskfree rate), defined such that the

sum of squared alphas is minimized (e.g., Kan, Robotti, and Shanken (2013)).1 Using

Equation (A4), we can write the pricing error as

 = 0  (A5)

where the ( + 1)-vectors  and  are defined as  = [1 
0
 ]
0 and  = (  

0
)

0 To
estimate  , we build on recent work by Gagliardini, Ossola, and Scaillet (2016; GOS

hereafter) who extend the traditional two-pass regression to a large and unbalanced

panel of test assets–two important features exhibited by micro portfolios.

In the first step, we run a time-series regression of  on the ( +  + 2)-vector

 = [1  
0
 

0
]
0 for each portfolio . The OLS estimator of the ( + +2)-vector

of coefficients  = (   
0
 

0
)
0 is given by

̂ =

Ã
X
=1

1
0


!−1 X
=1

1 (A6)

where  is the total number of observations, and 1 equals one if  is non-missing

1The forward price of the market factor does not appear in equation (A4) because  is an excess

return which, by definition, has a forward price equal to zero ( = 0)
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(and zero otherwise) The matrix inversion in Equation (A6) is numerically unstable if

only few return observations are available. To address this issue, GOS introduce the

following trimming device:

1

 = 1

n
  ≤ 1  (̂) ≤ 2

o
 (A7)

where   =


  =

P
=1 1 (̂) =

³
max(̂)min

³
̂

´´ 1
2
denotes

the condition number of the matrix ̂ =
1


P
=1 1

0
 Following GOS, we set

1 =
606
60
(a minimum of 60 monthly observations) and 2 = 15

In the second step, we estimate the-vector of factor prices  using a cross-sectional

regression of the estimated intercept ̂ on the -vector of estimated betas ̂ keeping

the non-trimmed portfolios only:

̂(1) = −
⎛⎝ X

=1

1

 ̂
0
̂

⎞⎠−1 X
=1

1

 ̂
0
̂  (A8)

We adjust ̂
(1)

for the bias component Ψ = −1
³
1


P
=1  

0
1 

´
, where  =

[0] 1 = [0×1  ]0  is the  ×  identity matrix,  = 02
−1
 

−1
 2

 = [2
0
] and 2 is a ( +  + 2) × ( + 1) matrix whose th row  ( =

1 3 4  + 1) has zeros everywhere except for the th element The final estimate of

 is equal to

̂ = ̂(1) +
1


Ψ̂  (A9)

where Ψ̂ is computed as ̂−1
³

1


P
=1 1


  

0
1̂ ̂(1)

´
  =

P
=1 1


  ̂ =

1


P
=1 1


 ̂
0
̂, ̂ = 02̂

−1
̂̂

−1
2 and ̂(1) = [1 ̂0

(1)
]0 Following GOS, we

estimate  using the White estimator (1980): ̂ =
1


P
=+1 1̂

2


0
 where ̂ =

− ̂0 Plugging the estimated quantities in Equation (A5), we compute the pricing
error as

̂ = ̂0̂  (A10)

B Estimation of the Portfolio -Statistics

We now prove Proposition 1 which provides an analytical expression for the -statistic

associated with the pricing error and its asymptotic distribution.

Proof of Proposition 1. We consider the misspecified model  and suppose

that the remaining residual terms  ( = 1 ) are weakly correlated. When the
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number of portfolios and return observations grow large ( →∞) Proposition 7 of
GOS shows that the estimated vector of forward prices converges towards  at a rate

equal to
√
 In addition, standard results in regression analysis reveal that the vector

of estimated coefficients ̂ is asymptotically distributed as

√
 (̂ − )

→  (0  )  (A11)

where  = 02
−1
 

−1
 2 With  in the thousands and  in the hundreds, the

asymptotic sampling variation in ̂ is therefore only driven by that of ̂ , i.e.,

√
 (̂ − )

→ 
¡
0 0 

¢
 (A12)

Using this result, we compute the portfolio -statistic  as
̂
̂

 where the estimated

variance is given by

̂2 =
1


̂0̂ ̂ = ̂0̂ ̂ (A13)

The variance term ̂ is equal to
1

̂  where ̂ is a consistent estimator of the covariance

matrix  . In addition, Equation (A12) implies that the -statistic follows a normal

distribution,  ∼ 
³




 1
´
 where  = 0 and 2 =

1

0  = 0.

III Statistical Inference

A Proportion of Mispriced Portfolios

We compute the proportion of portfolios mispriced by model  as

̂ = 1− ̂()

0()
= 1−

1


P
=1 1 ()

Φ0()
 (A14)

where ̂() is the empirical -statistic cdf, 1 () is an indicator function equal to one if

 falls in the interval  (and zero otherwise), and 0() is replaced with the standard

normal cdf Φ0() (as per Proposition 1). To conduct inference ̂ we rely on the

following proposition.

Proof of Proposition 2. We consider the misspecified model  and suppose

that the residual terms  ( = 1 ) are weakly correlated. We further assume

that the -statistics can be spatially ordered such that closely located -statistics exhibit

higher correlation.2 When the number of portfolios grows large ( →∞) Lemma 2 of
2A natural variable for this spatial ordering is the characteristic-based average return because port-
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Farcomeni (2006) shows that the empirical cdf ̂() is normally distributed as

√
(̂()−())

→ 
¡
0 2

¢
 (A15)

where 2 = (1 (1)) + 2
P∞

=2 (1 (1) 1 ()) and  ( = 1 ∞) are the ordered
-statistics.3 Because the variance of the estimated proportion ̂ only depends on that

of ̂() (see Equation (A14)), the asymptotic distribution of the vector of estimated

proportions for two misspecified models 1 and 2 is given by

√


"
̂1 − ∗1
̂2 − ∗2

#
→ 

⎛⎝ 0

0


21
Φ20()

12
Φ20()

21
Φ20()

22
Φ20()

⎞⎠  (A16)

where ∗1 = (̂1) and ∗2 = (̂2) The variance terms are given by

21 = (1 (11 )) + 2

∞X
=2

(1 (11 ) 1 (
1
 ))

22 = (1 (21 )) + 2

∞X
=2

(1 (21 ) 1 (
2
 ))

12 = (1 (11 ) 1 (
2
1 )) +

∞X
=2

(1 (11 ) 1 (
2
 )) + (1 (21 ) 1 (

1
 ))(A17)

where 1  2 ( = 1 ∞) are the ordered -statistics under models 1 and 2

Using Proposition 2, we can test the null hypothesis that model  is correctly

specified. Under the null hypothesis 0 : 
∗
 = 0 the estimated mispricing proportion

̂ is asymptotically distributed as

√
̂

→ 1

2
0 +

1

2
+

µ
0

2
Φ20()

¶
 (A18)

where 0 is a point-mass at zero and 
+ is a positive-truncated normal distribution (see

Proposition 3.2 of Genovese and Wasserman (2004)) To test this hypothesis at the size

level  we determine whether ̂ is sufficiently far away from zero using the following

threshold:

̂  
1√


̂

Φ0()
 (A19)

folios with similar average returns include similar stocks and are therefore more likely to have correlated

returns.
3Equation (A15) extends the results of Genovese and Wasserman (2004) derived under the assumption

that the -statistics are independent.
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where ̂ is the consistent estimator of  and  is the quantile of the standard

normal distribution at (1-) To compute ̂, we use the following estimator proposed

by Newey-West (1987):

̂2 =

⎡⎣ 1


X
=1

1 ( )

⎤⎦− ̂2() + 2

X
=1

⎡⎣ 1

 − 

−X
=1

1 ( )1 (

+)

⎤⎦− ̂2() (A20)

where  is set equal to 40 for the entire portfolio population (consistent with the results

of our Monte-Carlo simulations presented below).

Proposition 2 also allows us test the null hypothesis of equal performance between

two misspecified models (possibly non-nested). Under the null hypothesis 0 : ∆
∗ =

∗1 − ∗2 = 0 the estimated difference ∆̂ = ̂1 − ̂2 is asymptotically distributed

as √
(∆̂ −∆∗) → 

µ
0
21 + 22 − 212

Φ20()

¶
 (A21)

To implement this testing procedure, we compute the covariance term 12 using the

following consistent estimator:

̂
12 =

⎡⎣ 1


X
=1

1 (11 )1 (
2
1 )

⎤⎦− ̂1()̂2()

+

X
=1

⎡⎣ 1

 − 

−X
=1

1 (11 )1 (
2
+)

⎤⎦− ̂1()̂2()

+

X
=1

⎡⎣ 1

 − 

−X
=1

1 (21 )1 (
1
+)

⎤⎦− ̂1()̂2() (A22)

IV Extensions

A Sign of the Pricing Errors

We can extend the large-scale approach to conduct inference on the estimated propor-

tions of portfolios with negative and positive pricing errors To compute both proportions

denoted by ̂− and ̂+ , we use the procedure of Barras, Scaillet, and Wermers (2010).

First, we determine the proportions of portfolios with low or high estimated pricing er-

rors by computing the -statistic cdf ̂ over the intervals 
− = [−∞−05] and + =

[05+∞], respectively. Second, we deduct the proportion of "false discoveries", i.e.,
correctly-priced portfolios which, by chance, have -statistics falling in the intervals −

7



and +. This two-step approach yields the following expressions for ̂− and ̂+ and

their variances:

̂− = ̂(
−)− (1− ̂)Φ0(

−)

̂+ = ̂(
+)− (1− ̂)Φ0(

+) (A23)

2
−

= 2(−) +Φ
2
0(

−)2 − 2Φ0(−)(−) 

2
+

= 2(+) +Φ
2
0(

+)2 − 2Φ0(+)(+)  (A24)

where 2
(−) =

1

2
−  

2
(+)

= 1

2
+
 2 =

1


2
Φ20()

 (−) =
1

Φ0()
−

and (+) =
1

Φ0()
2
+

 The different components are given by

2− = (1−(1)) + 2
∞X
=2

(1−(1) 1
−( ))

2+ = (1+(1)) + 2

∞X
=2

(1+(1) 1
+( ))

− = (1−(1) 1 (

1)) +

∞X
=2

(1−(1) 1 (

 )) + (1 (1) 1

−( ))

+ = (1+(1) 1 (

1)) +

∞X
=2

(1+(1) 1 (

 )) + (1 (1) 1

+( )) (A25)

where 1−(), 1+() are indicator functions equal to one if  falls in the intervals −

and + (and zero otherwise). After replacing the above expressions with the consis-

tent estimators proposed by Newey-West (1987) we can conduct inference on the two

proportions ̂− and ̂+ 

B Testing for Useless Factors

We now explain how to test whether a given factor  ( = 1 ) included in model

 is useless. For each portfolio  ( = 1 ) the beta on factor  obtained from

the first-pass regression in Equation (A6) is asymptotically distributed as

√
 (̂ − )

→ 
¡
0 0 

¢
 (A26)
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where  is a ( + 1)-vector with zeros everywhere except for the position associated

with ̂ Using this result, we compute the associated -statistic  as
̂
̂

 where the

estimated variance of ̂ is given by

̂ =
1


0̂  (A27)

Then, we compute the proportion of portfolios with non-zero betas on factor  using

the same expression as in Equation (A14):

̂ = 1−
̂()

Φ0()
= 1−

1


P
=1 1 ()

Φ0()
 (A28)

where ̂ is the empirical cdf of the beta -statistics, and 1 () is an indicator function

equal to one if  falls in the interval  (and zero otherwise).

If factor  is useless, the true betas are all equal to zero (i.e., no beta dispersion)

and the null hypothesis is defined as 0 : (̂) = ∗ = 0 Based on Proposition

3.2 of Genovese and Wasserman (2004), we can write the distribution of the estimated

proportion ̂ under 0 as

√
̂

→ 1

2
0 +

1

2
+

Ã
0

2

Φ20()

!
 (A29)

where 0 is a point-mass at zero, 
+ is a positive-truncated normal distribution, and

2 follows the same expression as in Equation (A17) except that we use the ordered

beta -statistics  To test this hypothesis at the size level  we determine whether

̂ is sufficiently far away from zero using the following threshold:

∗  
1√


̂
Φ0()

 (A30)

where ̂ is the consistent estimator of   and  is the quantile of the standard

normal distribution at (1-)

V Diagnostic Criterion for a Weak Correlation Structure

We use the approach developed by Gagliardini, Ossola, and Scaillet (2017) to test

whether the remaining residual components  ( = 1 ) are weakly cross-correlated.

Similar to the extended two-pass regression presented above, this approach explicitly ac-
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counts for the large and unbalanced panel of micro portfolios. The criterion is given by

 = 1

⎛⎝ 1



X
=1

1

 ̄ ̄

0


⎞⎠−  ( )  (A31)

where ̄ is a  -vector containing the elements 1̂ ( = 1   ) 1() is the largest

eigenvalue of the matrix  and  ( ) is a penalty function defined as

 ( ) =

³√
 +

√

´2


ln

⎛⎜⎝ ³√
 +

√

´2
⎞⎟⎠  (A32)

Under this approach, we validate the weak structure hypothesis if the estimated crite-

rion ̂ is negative. The rationale for this asymptotically-valid selection rule builds on

Proposition 1 of Gagliardini, Ossola, and Scaillet (2017). When the number of portfo-

lios and return observations grow large ( → ∞) this proposition shows that the
probability that ̂ is negative equals one under a weak factor structure. On the contrary,

̂ is positive with probability one under a strong factor structure.

In our baseline specification, we compute the remaining residuals ̂ ( = 1 )

using the  -vector  which contains the orthogonal components of the size, value, prof-

itability, and investment factors of Fama and French (2015), and the equally-weighted

returns of micro portfolios in the tiny- and big-cap groups (6 factors). For each proposed

model, we find that ̂ is negative and thus validate the weak structure hypothesis.

VI A Simple Illustrative Example

In Section II of the paper, we use a simple illustrative example to compare the perfor-

mance of the two misspecified models  and  We now explain how to compute the

average value of the estimated mispricing proportion for each model  ( =  ):

(̂) = ∗ = 1−
()

0()
 (A33)

where  indicates the type of assets ( =stocks, micro portfolios) To measure ()

and 0() we assume that the asymptotic theory provides a valid approximation of the

distribution of the -statistics of the pricing errors. This yields the following simple

10



expressions:

() =
1



X
=1

Φ

µ



;

¶


() =
1



X
=1

Φ

µ



;

¶
 (A34)

where Φ (


;) and Φ(



;) are the cdfs of the normal distributions ( 


 1)

and (



 1) over the interval  and   denote the total numbers of stocks and

micro portfolios. The normality assumption also implies that the cdf for correctly-priced

portfolios is given by

0() = Φ0() (A35)

where Φ0() is the standard normal cdf over the interval 

For each individual stock  we compute the pricing error under model  as

 =  − ( + 

) (A36)

where  is the fitted premium obtained from the two-pass regression defined as
()

()


We further use the following approximation for the pricing error volatility,

 ≈
1√


  (A37)

where  is the number of return observations and  is the residual volatility for

individual stocks.

For each micro portfolio , we have

 =  − ( + 

) (A38)

and

 ≈
1√


1p


  (A39)

where  is equal to
()

()
 and  is the number of stocks in each portfolio ( = 10)

We set both  and  equal to 4 500We further set  equal to 012% per month,

and   equal to 190 and 390, respectively. These values correspond to the

median levels across stocks and micro portfolios over our sample period.
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VII Monte Carlo Analysis

A Setting

We conduct a Monte Carlo analysis to evaluate the finite-sample properties of the pro-

portion estimators for two misspecified models  and . We extend the simple illus-

trative example described above on several important dimensions to closely replicate the

salient features of the data. First, we match the total number of micro portfolios across

the three size groups (before imposing any filters on the data). Specifically, we construct

a set of 2,349 tiny-cap portfolios, 938 small-cap portfolios, and 1,302 big-cap portfolios

based on the empirical characteristics of the individual stocks in each size group.

Second, we account for the unbalanced nature of the panel of portfolio returns. To

guarantee the same unbalanced structure as in the data, we apply the empirical  ×

matrix of indicators 1 ( = 1  and  = 1   ) to each simulated panel of portfolio

returns, where  denotes the total sample size equal to 606 monthly observations, and

 is equal to 4,589 micro portfolios.

Third, we jointly match the average proportion of mispriced portfolios across the

proposed models examined in the empirical section by adding a size premium  to the

average excess return of each individual stock  ( = 1 ):

 =  +  +  +  (A40)

where  is the premium of the market return  and   denote the premia of the

two additional risk factors  and 

Model  includes the market and factor  which implies that the vector of ex-

planatory variables is defined as  = [1   ]
0 The term  is the estimated

component of the omitted factor  that is orthogonal to 0 = [1  ]
0 i.e.,

 =  − 00̂  where ̂ is the vector of estimated coefficients from a time-series

regression of  on 0 over the entire sample period. Model  includes the market

and factor  which implies that  = [1   ]
0 where  =  − 0̂ ,

0 = [1  ]
0 and ̂ is the vector of estimated coefficients from a time-series re-

gression of the omitted factor  on 
0
 over the entire sample period. We assume that

   and the residual term  are all independent and normally distributed as

( 
2
), ( 

2
) ( 

2
), and (0 2) respectively. We further assume that

    are randomly drawn from the normal distribution (() ()),

(() ()), (() ()), (() ()).
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To calibrate the model, we use monthly data on individual stocks (with a minimum

of 100 observations) and the Fama-French three factors (market, size, value) over the

entire sample period. The calibration of the distribution parameters for the betas and

the residual term is done separately for each size group. To attribute each individual

stock to a specific size group, we form, each year, the three size groups by taking as

breakpoints the 20th and 50th percentiles of the market capitalization for the NYSE

stocks (similar to Fama and French (2008)). We then classify each stock based on the

frequencies at which it falls in the three groups. For each size group, we set () and

() equal to the median and variance of the estimated size betas, and () and

() equal to the median and variance of the estimated market betas. We further

set () and () for each additional risk factor  ( =  ) equal to the median

and variance of the estimated value betas. Finally,  is set equal to the cross-sectional

average of the estimated residual volatility.

We set  equal to 0.5% per month so as to approximate the median value for the

proportions of mispriced portfolios (around 45%). We set  and  equal to the

average return and volatility of the CRSP value-weighted index (0.5% and 4.4% per

month). For the volatilities  and  of the additional risk factors  and  we split

the volatility of the value factor in two (2.8% per month). To determine the values for

 and  we choose two extreme scenarios to capture the minimum and maximum

proportion differences observed in the data. Under the first scenario,  and  are

set equal to 10% and 0.0% per month so as to produce a large proportion difference

between the two models. Under the second scenario,  and  are both equal to 05%

per month, which implies that both models yield the same moderate performance.

B Simulation Procedure

For each scenario, we compute the estimated proportions of mispriced portfolios over

1,000 iterations and five sets of values for the stock betas ( = 5 000). For each iteration

 ( = 1  ) we first construct a  -vector of monthly return observations for each

stock  ( = 1 ) :

() =  + () + () + () + () (A41)

where () () () and () are drawn from their respective distributions.

Second, we form the cross-section of micro portfolios using the average stock return 

as the sorting variable and apply the portfolio formation described in Section I of the
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appendix.4 The resulting cross-section consists of  micro portfolios, each containing

10 stocks–stock  and nine additional stocks with the nearest average return to stock 

We keep track of the identity of the stocks included in each micro portfolio via a×

matrix  whose th row  has zeros everywhere except in for the stocks included in

the portfolio. Third, we construct the monthly return of each micro portfolio  from the

 -vector of stock returns () = [1  ]
0 :

() = 1
1


(())  (A42)

where 1 takes the value of one if the return is observed in the data (and zero otherwise).

Fourth, we compute the vector of -statistics for all portfolios using the extended two-

pass regression described in Section II of the appendix and estimate the proportions of

mispriced portfolios for the two models and its difference,

̂() = 1− ̂()()

Φ0()


̂() = 1− ̂()()

Φ0()


∆̂() = ̂()− ̂() (A43)

as well as the estimated variances of these estimators using Equations (A20) and (A22),

̂2() =
̂2()

Φ20()


̂2() =
̂2()

Φ20()


̂2∆() =
̂2() + ̂2()− 2̂()

Φ20()
 (A44)

Repeating these three steps  times, we can then compute the average values of the

estimated proportions and their difference as

(̂) = ∗ =
1



X
=1

̂()

(̂) = ∗ =
1



X
=1

̂()

4We assume that the book equity of each firm is proportional to its future expected cash flows. In

this case, the average return can be directly inferred from the observable BM of each firm, i.e.,  is

proportional to  (see Berk (2000))
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(∆̂) = ∆∗ = ∗ − ∗  (A45)

We also compare the true variance of the estimators with the average estimated values:

2 =
1



X
=1

̂2()− (∗)2 versus (̂2) =
1



X
=1

̂2()

2 =
1



X
=1

̂2()− (∗)2 versus (̂2) =
1



X
=1

̂2()

2∆ =
1



X
=1

∆̂2()− (∆∗)2 versus (̂2∆) =
1



X
=1

̂2∆() (A46)

where we set  = 40 which represents 1% of the total sample5 To further measure the

accuracy of the variance estimators, we compute the coverage ratio of the confidence

intervals at  equal to 90% and 95% as

(̂) =
1



X
=1

1{(̂()− ∗)  ̂()}

(̂) =
1



X
=1

1{(̂()− ∗)  ̂()}

(̂∆) =
1



X
=1

1{(∆̂()−∆∗)  ̂
2
∆()} (A47)

where 1{} equals one if the condition inside the parenthesis is satisfied (and zero oth-
erwise), and  equals the quantile of the standard normal distribution at (1-


2
)

C Main Results

In Panel A of Table AI, we examine the properties of the different estimators under the

first scenario where the two models  and  achieve a large difference in performance

(34.5% in the entire population) The true volatilities of the different estimators range

between 3.6% and 9.0% and are typically higher for the two largest size groups which

contain fewer portfolios. Turning to the properties of the variance estimators, we find

that the average value for each model in the entire population is slightly below average

(0.5% for model  and 0.3% for model ) In contrast, the volatility estimator for the

difference yields an average value that closely matches the true volatility (5.1% versus

5.0%). This last property is maintained across all three size groups. Finally, the coverage

5For the small- and big-cap groups which only contain around 1,000 portfolios, we reduce  to 10.
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ratios of the two confidence intervals at 90% and 95% are, in most cases, remarkably

accurate. For instance, the coverage ratios for the proportion difference in the entire

population are equal to 90.1% and 95.3%, respectively.

In Panel B, we repeat the analysis for the second scenario where the two models

yield the same moderate performance. Similar to the previous scenario, the volatility

estimators precisely capture the variability of the estimated mispricing proportions for

the entire population (they are identical to the true values for both models). We also

find that the coverage ratios stay close to their theoretical values (88.0% and 93.4% for

the intervals at 90% and 95%, respectively). While the results are similar for the big-

cap group, they are less accurate in the two smallest size groups (micro- and small-cap).

In both groups, the volatility estimators underestimate the true volatilities by 12% on

average (in relative terms), which implies that the coverage ratios of the confidence

intervals are slightly lower than their theoretical values.

Please insert Table AI here

VIII Additional Results

A Change in the Number of Stocks

We now re-evaluate the different models after changing the number of stocks  included

in each micro portfolio. In Panel A of Table AII, we report the estimated mispricing

proportions for micro portfolios formed with 5 stocks ( = 5). The ranking of the dif-

ferent models is similar to the baseline case. In particular, the human capital CAPM

performs well in each size group, the conditional CAPM produces low pricing errors in

the two largest size groups, and the liquidity CAPM is successful among tiny-cap port-

folios. However, the proportions of mispriced portfolios are lower than those reported

in the baseline case, i.e., the average level in the entire population drops from 52.1% to

41.1%. With only 5 stocks in each portfolio, the benefits of diversification are not fully

exploited and the detection of the mispriced portfolios becomes more difficult.

Next, Panel B repeats the analysis for micro portfolios formed with 15 stocks ( =

15) Compared to the baseline case, both the relative performance of the models and

the mispricing proportions remain largely unchanged. In general, we also observe that

the volatilities of the estimators are slightly higher This is consistent with the fact that

micro portfolios have a larger number of stocks in common and thus exhibit higher

cross-correlation.

Please insert Table AII here
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B Change in the Interval A

To compute the proportion of mispriced portfolios ̂, we have to specify the length of

the interval  centered around zero (see Equation (A14)). We consider two alternative

specifications where  is set equal to [−025 025] and [−04 04].6 Table AIII shows

that the mispricing proportions remain essentially unchanged, i.e., the averages are equal

to 52.5% and 52.3% versus 52.1% in the baseline case. This lack of variation can be

explained by the fact that both the numerator ̂() and the denominator Φ0() scale

up and down with  which leaves the ratio
̂()

Φ0()
nearly unchanged (a similar point is

made by Barras, Scaillet, and Wermers (2010) and Storey (2002)).

Please insert Table AIII here

C Change in the Common Vector z

We consider three alternative sets of common factors to capture the strong correlation

structure between the portfolio residuals: (i) the Fama-French size, value, investment,

and profitability factors, (ii) the Fama-French size and value factors, and (iii) no factors

at all. Overall, the results in Table AIV are similar to those reported in the baseline

case. With these new sets of common factors, the performance of the conditional CAPM

and the human capital CAPM is even stronger–for instance, Panel B shows that the

mispricing proportions in the big-cap group are respectively equal to 16.3% and 15.8%

(versus 61.1% for the CAPM) when the size and value factors are used.

Contrary to our baseline specification, we find that the diagnostic ̂ in Equation

(A31) is positive in all three cases. Therefore, we reject the hypothesis that the remaining

residuals  ( = 1 ) are weakly correlated. This result has implications for

statistical inference–the asymptotic distribution of the mispricing proportion and the

expression for its volatility derived in Proposition 2 depend on the weak correlation

assumption. Therefore, the estimated volatilities computed in Table AIV may be poor

estimators of the true volatilities.7

Please insert Table AIV here

6 In the baseline case, the interval  = [−05 05] includes 40% of the -statistic observations for

correctly-priced portfolios (Φ0() = 040). Under the two alternative scenarios, the values for Φ0()

are equal to 20% and 30%, respectively.
7This is likely to be the case in Panel C because no factors are used to capture the cross-correlation

between the portfolio residuals.
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D Bootstrap Analysis

In the baseline specification, we assume that the -statistics of correctly-priced portfo-

lios follow a standard normal distribution (0 1) (see Equation (A14)) We now relax

this assumption by using the bootstrap approach of Efron (2010, ch. 2) in which the

-statistic of each portfolio is transformed into an alternative statistic called the -value.

This transformation guarantees that the -value of a correctly-priced portfolio is dis-

tributed as a normal (0 1). Therefore, we can still use Equation (A14) to compute ̂

provided that we use -values instead of -statistics.

To compute the -value of each portfolio  ( = 1 ), we use the following

procedure. First, we draw, for each bootstrap iteration  ( = 1  ) random observa-

tions from the original sample of risk factors and residuals to re-construct the portfolio

returns:

() = 0 + ̂() + ̂() + ̂() + ̂() (A48)

where we impose that the portfolio is correctly priced ( = 0) by setting

0 = −̂̂ (A49)

Second, we re-estimate the portfolio -statistic by regressing the bootstrapped returns

on the bootstrapped factors, i.e.,

() =
̂0̂()³

̂0̂ ()̂
´ 1
2

 (A50)

where ̂() =(̂(),̂())
0, ̂ () denote the bootstrapped coefficient vector and its

covariance matrix. Third, we repeat the first two steps  times and compute the boot-

strapped cdf associated with the original -statistic as

0() =
1



X
=1

1{() 6 } (A51)

Finally, we obtain the -value by inverting the quantile 0() using the standard

normal cdf, i.e.,

 = Φ
−1
0 (0()) (A52)

The bootstrap analysis based on 1,000 iterations ( = 1 000) is reported in Table AV.

The estimated proportions of mispriced portfolios remain largely unchanged compared
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to the baseline case. This result implies that the sample size is sufficiently large for the

normal distribution to be a good approximation for the true -statistic distribution.

Please insert Table AV here

E Weighted Least Square Estimation

To account for the variation in the precision of the estimated coefficients ̂ and ̂ across

micro portfolios in Equation (A8), we use a Weighted Least Square (WLS) approach to

estimate the forward prices of the risk factors Specifically, we follow GOS and multiply

̂ and ̂ by the weight  = 1

 

−1 where  is the variance of the standardized

errors
√
 ̂ =

√
 (̂ + ̂0


) defined as

 =  
0  (A53)

To compute the empirical counterpart of   we use the following expression

b =   ̂
0
(1)̂ ̂(1) (A54)

Using the estimated set of weights b , we estimate the vector of forward prices as
̂ = −

⎛⎝ X
=1

̂ ̂
0
̂

⎞⎠−1 X
=1

̂ ̂
0
̂  (A55)

Table AVI shows the results obtained with the WLS approach. While the mispricing

proportions are slightly lower on average (45.9% versus 52.1% in the baseline case), the

relative performance of the different models stays largely unchanged.

Please insert Table AVI here

F Exclusion of Financial Firms

In the baseline analysis, we include all common stocks traded in AMEX, NASDAQ, and

NYSE. To examine whether our results are not driven by the specific characteristics of

the financial industry, we follow Fama and French (2008) and remove all stocks with

Standard Industrial Classification (SIC) codes between 6000 and 6999. The results in

Table AVII reveal that the performance of the models remains largely unchanged.

Please insert Table AVII here
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Table AI

Monte Carlo Analysis

Panel A reports the properties of the proportion estimators under the first scenario where there

is a large performance difference between the two misspecified models Ma and Mb. For the entire

population and each size group (tiny-, small-, and big-cap), the first column shows the average

values of the estimated proportions of mispriced portfolios for both models and their difference.

The second and third columns compare the true volatilities of the estimated proportions and their

difference with the estimated volatilities. The fourth and fifth columns show the coverage ratios

of the confidence intervals at 90% and 95% for the estimated proportions and their difference.

In Panel B, we repeat the analysis under the second scenario where the two models produce the

same moderate performance. The total number of iterations is equal to 5,000.

Panel A: Large Performance Difference

Volatility Confidence Interval

Mean True Estimated 90%-coverage 95%-coverage

All Portfolios

Model Ma 30.6 3.6 3.1 91.3 94.5

Model Mb 65.1 4.3 4.0 92.5 95.8

Difference -34.5 5.0 5.1 90.1 95.3

Tiny-Cap Portfolios

Model Ma 32.4 4.8 4.6 93.2 96.1

Model Mb 62.5 6.7 5.7 89.8 93.5

Difference -30.1 8.0 7.7 87.9 93.7

Small-Cap Portfolios

Model Ma 32.4 7.4 6.6 92.1 95.3

Model Mb 63.1 5.6 5.9 94.0 96.3

Difference -30.6 9.0 9.1 90.3 94.8

Big-Cap Portfolios

Model Ma 15.4 6.2 5.6 92.9 95.8

Model Mb 68.3 4.6 5.3 95.4 97.7

Difference -52.9 7.3 7.6 91.0 95.5

21



Table AI

Monte Carlo Analysis (Continued)

Panel B: No Performance Difference

Volatility Confidence Interval

Mean True Estimated 90%-coverage 95%-coverage

All Portfolios

Model Ma 40.0 2.9 2.9 94.1 96.9

Model Mb 40.0 2.9 2.9 94.1 96.7

Difference 0.0 4.0 3.8 88.0 93.4

Tiny-Cap Portfolios

Model Ma 35.9 4.4 3.9 92.0 93.5

Model Mb 35.7 4.4 3.8 90.1 95.3

Difference 0.2 5.9 5.3 85.2 91.3

Small-Cap Portfolios

Model Ma 33.3 6.5 5.8 90.0 93.3

Model Mb 33.0 6.3 5.8 92.7 95.3

Difference 0.3 9.5 8.2 84.4 90.3

Big-Cap Portfolios

Model Ma 34.9 5.3 5.2 93.1 96.1

Model Mb 35.0 5.1 5.3 94.7 97.2

Difference -0.1 7.4 7.2 88.7 93.6
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Table AII

Change in the Number of Stocks

Panel A reports the estimated proportions of micro portfolios made up of five stocks (n=5)

that are mispriced by the CAPM, the conditional CAPM, the human capital CAPM, the in-

tertemporal CAPM, and the liquidity CAPM. This analysis is conducted for the entire portfolio

population (All) and the three size groups (tiny-, small-, and big-cap). Figures in parentheses

denote the estimated volatilities of the proportion estimates. In Panel B, we repeat the analysis

using micro portfolios made up of 15 stocks (n=15).

Panel A: Five Stocks

Size Groups

All Tiny-cap Small-cap Large-cap

CAPM 51.1 (2.1) 61.1 (5.5) 48.4 (4.6) 31.7 (4.6)

Conditional CAPM 43.1 (1.9) 57.3 (5.5) 32.6 (3.8) 21.5 (4.4)

Human Capital CAPM 30.0 (2.8) 34.3 (4.2) 37.4 (5.1) 19.5 (4.7)

Intertemporal CAPM 46.6 (2.2) 51.1 (4.6) 52.1 (4.1) 34.6 (3.8)

Liquidity CAPM 34.3 (2.1) 40.6 (4.3) 43.4 (4.9) 22.7 (4.1)

Average 41.1 49.0 42.9 25.6

Panel B: Fifteen Stocks

Size Groups

All Tiny-cap Small-cap Large-cap

CAPM 74.2 (2.0) 80.5 (4.6) 75.5 (4.4) 59.4 (4.4)

Conditional CAPM 55.9 (2.2) 78.1 (4.9) 30.7 (4.8) 30.2 (5.2)

Human Capital CAPM 43.7 (3.4) 48.5 (4.7) 56.8 (5.8) 19.0 (4.9)

Intertemporal CAPM 66.7 (2.0) 69.3 (4.5) 76.1 (4.5) 57.7 (4.9)

Liquidity CAPM 36.4 (2.6) 39.7 (4.1) 52.4 (6.0) 35.1 (5.1)

Average 55.4 63.0 58.3 40.3
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Table AIII

Change in the Interval A

Panel A reports the estimated proportions of micro portfolios that are mispriced by the standard

CAPM, the conditional CAPM, the human capital CAPM, the intertemporal CAPM, and the

liquidity CAPM using an interval  equal to [0.25,0.25]. This analysis is conducted for the

entire portfolio population (All) and the three size groups (tiny-, small-, and big-cap). Figures

in parentheses denote the estimated volatilities of the proportion estimates. In Panel B, we

repeat the analysis using an interval  equal to [0.4,0.4].

Panel A: Interval =[0.25,0.25]

Size Groups

All Tiny-cap Small-cap Large-cap

CAPM 64.6 (2.5) 76.1 (5.0) 60.0 (5.9) 43.9 (5.7)

Conditional CAPM 50.3 (2.6) 69.8 (5.7) 32.5 (4.7) 25.9 (5.4)

Human Capital CAPM 45.3 (3.1) 47.5 (5.4) 58.4 (5.8) 22.1 (6.1)

Intertemporal CAPM 64.0 (2.3) 62.1 (4.9) 70.8 (5.6) 50.0 (5.8)

Liquidity CAPM 43.6 (2.5) 40.9 (5.7) 49.8 (6.0) 30.7 (7.1)

Average 52.5 59.2 54.2 34.8

Panel B: Interval  =[0.4,0.4]

Size Groups

All Tiny-cap Small-cap Large-cap

CAPM 66.4 (2.2) 76.4 (5.2) 60.2 (4.7) 48.8 (4.7)

Conditional CAPM 51.2 (2.0) 70.1 (5.2) 29.3 (3.7) 22.4 (5.2)

Human Capital CAPM 44.7 (2.9) 47.0 (4.8) 52.3 (5.8) 20.3 (5.0)

Intertemporal CAPM 62.6 (2.1) 59.6 (5.0) 68.7 (4.6) 51.1 (4.5)

Liquidity CAPM 42.2 (2.4) 39.6 (5.0) 49.2 (5.2) 31.1 (6.0)

Average 52.3 58.6 51.9 34.2
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Table AIV

Change in the Set of Common Factors

Panel A reports the estimated proportions of micro portfolios that are mispriced by the CAPM,

the conditional CAPM, the human capital CAPM, the intertemporal CAPM, and the liquid-

ity CAPM using as common factors the Fama-French size, value, investment, and profitability

factors. This analysis is conducted for the entire portfolio population (All) and the three size

groups (tiny-, small-, and big-cap). Figures in parentheses denote the estimated volatilities of

the proportion estimates. In Panels B and C, we repeat the analysis using as common factors

the Fama-French size and value factors and no factors at all.

Panel A: Size, Value, Investment, and Profitability Factors

Size Groups

All Tiny-cap Small-cap Large-cap

CAPM 64.3 (2.6) 73.4 (5.6) 60.5 (4.4) 47.9 (4.6)

Conditional CAPM 36.8 (2.3) 55.1 (4.5) 24.8 (4.1) 7.3 (4.5)

Human Capital CAPM 34.9 (3.3) 36.3 (5.2) 49.8 (5.3) 11.9 (5.2)

Intertemporal CAPM 59.3 (2.1) 67.0 (4.7) 63.8 (4.9) 57.5 (4.4)

Liquidity CAPM 33.1 (2.7) 37.2 (6.1) 50.7 (5.7) 27.0 (4.8)

Average 45.7 53.8 49.9 30.3

Panel B: Size and Value Factors

Size Groups

All Tiny-cap Small-cap Large-cap

CAPM 68.7 (2.4) 73.2 (5.4) 66.3 (4.8) 61.1 (4.4)

Conditional CAPM 35.6 (2.3) 49.1 (4.4) 29.3 (4.6) 16.3 (5.1)

Human Capital CAPM 39.8 (3.4) 34.0 (5.3) 57.7 (5.2) 15.8 (5.8)

Intertemporal CAPM 67.6 (2.2) 67.1 (4.6) 67.4 (4.8) 59.9 (4.2)

Liquidity CAPM 39.2 (2.8) 37.3 (5.6) 64.9 (5.0) 42.1 (5.6)

Average 50.3 52.2 57.1 39.1

Panel C: No Factors

Size Groups

All Tiny-cap Small-cap Large-cap

CAPM 61.4 (2.6) 68.6 (5.7) 55.7 (5.2) 51.1 (4.7)

Conditional CAPM 34.1 (2.6) 47.8 (4.7) 29.6 (5.7) 12.7 (4.6)

Human Capital CAPM 30.1 (3.9) 30.0 (6.0) 35.9 (5.4) 10.0 (4.9)

Intertemporal CAPM 62.0 (2.8) 65.1 (5.0) 56.6 (5.5) 55.0 (5.3)

Liquidity CAPM 27.3 (3.6) 23.5 (6.0) 51.5 (5.3) 41.1 (5.3)

Average 43.0 47.0 45.9 34.0
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Table AIV

Bootstrap Analysis

This table reports the estimated proportions of micro portfolios that are mispriced by the CAPM,

the conditional CAPM, the human capital CAPM, the intertemporal CAPM, and the liquidity

CAPM using a bootstrap procedure to estimate the distribution of the -statistics. This analysis

is conducted for the entire portfolio population (All) and the three size groups (tiny-, small-, and

big-cap). Figures in parentheses denote the estimated volatilities of the proportion estimates.

Size Groups

All Tiny-cap Small-cap Large-cap

CAPM 64.4 (3.1) 74.8 (5.4) 60.7 (4.2) 47.4 (4.2)

Conditional CAPM 47.5 (2.1) 71.2 (4.9) 27.3 (3.9) 20.2 (4.7)

Human Capital CAPM 40.7 (1.4) 45.5 (4.6) 50.4 (4.8) 19.2 (4.6)

Intertemporal CAPM 61.0 (1.4) 66.3 (4.7) 65.2 (4.9) 48.9 (4.0)

Liquidity CAPM 39.1 (1.3) 38.9 (5.0) 39.0 (5.4) 27.5 (5.1)

Average 50.5 59.3 48.5 32.6
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Table AV

Weighted Least Square Estimation

This table reports the estimated proportions of micro portfolios that are mispriced by the CAPM,

the conditional CAPM, the human capital CAPM, the intertemporal CAPM, and the liquidity

CAPM using a Weighted Least Square (WLS) approach to estimate the price of the risk factor.

This analysis is conducted for the entire portfolio population (All) and the three size groups

(tiny-, small-, and big-cap). Figures in parentheses denote the estimated volatilities of the

proportion estimates.

Size Groups

All Tiny-cap Small-cap Large-cap

CAPM 65.5 (2.1) 74.9 (5.4) 62.1 (4.0) 48.2 (4.2)

Conditional CAPM 47.5 (1.7) 64.5 (4.6) 30.1 (3.7) 24.6 (4.8)

Human Capital CAPM 37.3 (3.0) 39.0 (4.5) 46.5 (5.2) 25.6 (5.1)

Intertemporal CAPM 44.9 (2.6) 41.1 (4.7) 46.5 (5.4) 46.7 (4.4)

Liquidity CAPM 32.3 (2.6) 32.5 (4.6) 34.8 (6.1) 29.0 (5.0)

Average 45.5 44.0 34.8 45.5

27



Table AVI

Exclusion of Financial Firms

This table reports the estimated proportions of micro portfolios that are mispriced by the CAPM,

the conditional CAPM, the human capital CAPM, the intertemporal CAPM, and the liquidity

CAPM using non-financial firms only. This analysis is conducted for the entire portfolio popu-

lation (All) and the three size groups (tiny-, small-, and big-cap). Figures in parentheses denote

the estimated volatilities of the proportion estimates.

Size Groups

All Tiny-cap Small-cap Large-cap

CAPM 66.0 (2.2) 77.4 (5.3) 62.0 (3.8) 45.0 (4.6)

Conditional CAPM 55.3 (1.7) 74.8 (4.9) 37.1 (4.4) 20.9 (4.6)

Human Capital CAPM 42.3 (2.9) 46.2 (4.3) 56.3 (4.5) 12.7 (4.9)

Intertemporal CAPM 60.2 (2.2) 62.9 (4.7) 65.2 (5.1) 45.0 (4.4)

Liquidity CAPM 36.1 (2.5) 43.8 (4.2) 57.7 (3.9) 25.1 (4.3)

Average 52.0 61.0 55.7 29.8
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